Cargando…
Assessing current temporal and space-time anomalies of disease incidence
Approaches used to early and accurately characterize epidemiologic patterns of disease incidence in a temporal and spatial series are becoming increasingly important. Cluster tests are generally designed for retrospective detection of epidemiologic anomalies in a temporal or space-time series. Timel...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683561/ https://www.ncbi.nlm.nih.gov/pubmed/29131869 http://dx.doi.org/10.1371/journal.pone.0188065 |
_version_ | 1783278310987399168 |
---|---|
author | Wu, Chih-Chieh Chen, Chien-Hsiun Shete, Sanjay |
author_facet | Wu, Chih-Chieh Chen, Chien-Hsiun Shete, Sanjay |
author_sort | Wu, Chih-Chieh |
collection | PubMed |
description | Approaches used to early and accurately characterize epidemiologic patterns of disease incidence in a temporal and spatial series are becoming increasingly important. Cluster tests are generally designed for retrospective detection of epidemiologic anomalies in a temporal or space-time series. Timely identification of anomalies of disease or poisoning incidence during ongoing surveillance or an outbreak requires the use of sensitive statistical methods that recognize an incidence pattern at the time of occurrence. This report describes 2 novel analytical methods that focus on detecting anomalies of incidence at the time of occurrence in a temporal and space-time series. The first method describes the paucity of incidence at the time of occurrence in an ongoing surveillance and is designed to evaluate whether a decline in incidence occurs on the single current day or during the most recent few days. The second method provides an overall assessment of current clustering or paucity of incidence in a space-time series, allowing for several space regions. We illustrate the application of these methods using a subsample of a temporal series of data on the largest dengue outbreak in Taiwan in 2015 since World War II and demonstrate that they are useful to efficiently monitor incoming data for current clustering and paucity of incidence in a temporal and space-time series. In light of the recent global emergence and resurgence of Zika, dengue, and chikungunya infection, these approaching for detecting current anomalies of incidence in the ongoing surveillance of disease are particularly desired and needed. |
format | Online Article Text |
id | pubmed-5683561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56835612017-11-30 Assessing current temporal and space-time anomalies of disease incidence Wu, Chih-Chieh Chen, Chien-Hsiun Shete, Sanjay PLoS One Research Article Approaches used to early and accurately characterize epidemiologic patterns of disease incidence in a temporal and spatial series are becoming increasingly important. Cluster tests are generally designed for retrospective detection of epidemiologic anomalies in a temporal or space-time series. Timely identification of anomalies of disease or poisoning incidence during ongoing surveillance or an outbreak requires the use of sensitive statistical methods that recognize an incidence pattern at the time of occurrence. This report describes 2 novel analytical methods that focus on detecting anomalies of incidence at the time of occurrence in a temporal and space-time series. The first method describes the paucity of incidence at the time of occurrence in an ongoing surveillance and is designed to evaluate whether a decline in incidence occurs on the single current day or during the most recent few days. The second method provides an overall assessment of current clustering or paucity of incidence in a space-time series, allowing for several space regions. We illustrate the application of these methods using a subsample of a temporal series of data on the largest dengue outbreak in Taiwan in 2015 since World War II and demonstrate that they are useful to efficiently monitor incoming data for current clustering and paucity of incidence in a temporal and space-time series. In light of the recent global emergence and resurgence of Zika, dengue, and chikungunya infection, these approaching for detecting current anomalies of incidence in the ongoing surveillance of disease are particularly desired and needed. Public Library of Science 2017-11-13 /pmc/articles/PMC5683561/ /pubmed/29131869 http://dx.doi.org/10.1371/journal.pone.0188065 Text en © 2017 Wu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wu, Chih-Chieh Chen, Chien-Hsiun Shete, Sanjay Assessing current temporal and space-time anomalies of disease incidence |
title | Assessing current temporal and space-time anomalies of disease incidence |
title_full | Assessing current temporal and space-time anomalies of disease incidence |
title_fullStr | Assessing current temporal and space-time anomalies of disease incidence |
title_full_unstemmed | Assessing current temporal and space-time anomalies of disease incidence |
title_short | Assessing current temporal and space-time anomalies of disease incidence |
title_sort | assessing current temporal and space-time anomalies of disease incidence |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683561/ https://www.ncbi.nlm.nih.gov/pubmed/29131869 http://dx.doi.org/10.1371/journal.pone.0188065 |
work_keys_str_mv | AT wuchihchieh assessingcurrenttemporalandspacetimeanomaliesofdiseaseincidence AT chenchienhsiun assessingcurrenttemporalandspacetimeanomaliesofdiseaseincidence AT shetesanjay assessingcurrenttemporalandspacetimeanomaliesofdiseaseincidence |