Cargando…
Application of bi-clustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials
This article contains data related to the research article ‘Application of bi-clustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials’ (Williams and Halappanavar, 2015) [1]. The presence of diverse types of nanomaterials (NMs)...
Autores principales: | Williams, Andrew, Halappanavar, Sabina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683856/ https://www.ncbi.nlm.nih.gov/pubmed/29159232 http://dx.doi.org/10.1016/j.dib.2017.10.060 |
Ejemplares similares
-
Application of biclustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials
por: Williams, Andrew, et al.
Publicado: (2015) -
Data sets of eQTL loci, correlation analysis, and overlapped genes among gene sets that their expression levels are closely related to genes of Vegf family
por: Cui, Jinglin, et al.
Publicado: (2018) -
Dataset of Escherichia coli O157: H7 genes enriched in adherence to spinach root tissue
por: Holmes, Ashleigh, et al.
Publicado: (2020) -
Required Gene Set for Autotrophic Growth of Clostridium autoethanogenum
por: Woods, Craig, et al.
Publicado: (2022) -
Phenotypic and Transcriptomic Analyses of Seven Clinical Stenotrophomonas maltophilia Isolates Identify a Small Set of Shared and Commonly Regulated Genes Involved in the Biofilm Lifestyle
por: Alio, Ifey, et al.
Publicado: (2020)