Cargando…
Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling
Flexoelectricity refers to electric polarization generated by heterogeneous mechanical strains, namely strain gradients, in materials of arbitrary crystal symmetries. Despite more than 50 years of work on this effect, an accurate identification of its coupling strength remains an experimental challe...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684141/ https://www.ncbi.nlm.nih.gov/pubmed/29133906 http://dx.doi.org/10.1038/s41467-017-01733-8 |
_version_ | 1783278410089365504 |
---|---|
author | Li, Q. Nelson, C. T. Hsu, S.-L. Damodaran, A. R. Li, L.-L. Yadav, A. K. McCarter, M. Martin, L. W. Ramesh, R. Kalinin, S. V. |
author_facet | Li, Q. Nelson, C. T. Hsu, S.-L. Damodaran, A. R. Li, L.-L. Yadav, A. K. McCarter, M. Martin, L. W. Ramesh, R. Kalinin, S. V. |
author_sort | Li, Q. |
collection | PubMed |
description | Flexoelectricity refers to electric polarization generated by heterogeneous mechanical strains, namely strain gradients, in materials of arbitrary crystal symmetries. Despite more than 50 years of work on this effect, an accurate identification of its coupling strength remains an experimental challenge for most materials, which impedes its wide recognition. Here, we show the presence of flexoelectricity in the recently discovered polar vortices in PbTiO(3)/SrTiO(3) superlattices based on a combination of machine-learning analysis of the atomic-scale electron microscopy imaging data and phenomenological phase-field modeling. By scrutinizing the influence of flexocoupling on the global vortex structure, we match theory and experiment using computer vision methodologies to determine the flexoelectric coefficients for PbTiO(3) and SrTiO(3). Our findings highlight the inherent, nontrivial role of flexoelectricity in the generation of emergent complex polarization morphologies and demonstrate a viable approach to delineating this effect, conducive to the deeper exploration of both topics. |
format | Online Article Text |
id | pubmed-5684141 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-56841412017-11-17 Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling Li, Q. Nelson, C. T. Hsu, S.-L. Damodaran, A. R. Li, L.-L. Yadav, A. K. McCarter, M. Martin, L. W. Ramesh, R. Kalinin, S. V. Nat Commun Article Flexoelectricity refers to electric polarization generated by heterogeneous mechanical strains, namely strain gradients, in materials of arbitrary crystal symmetries. Despite more than 50 years of work on this effect, an accurate identification of its coupling strength remains an experimental challenge for most materials, which impedes its wide recognition. Here, we show the presence of flexoelectricity in the recently discovered polar vortices in PbTiO(3)/SrTiO(3) superlattices based on a combination of machine-learning analysis of the atomic-scale electron microscopy imaging data and phenomenological phase-field modeling. By scrutinizing the influence of flexocoupling on the global vortex structure, we match theory and experiment using computer vision methodologies to determine the flexoelectric coefficients for PbTiO(3) and SrTiO(3). Our findings highlight the inherent, nontrivial role of flexoelectricity in the generation of emergent complex polarization morphologies and demonstrate a viable approach to delineating this effect, conducive to the deeper exploration of both topics. Nature Publishing Group UK 2017-11-13 /pmc/articles/PMC5684141/ /pubmed/29133906 http://dx.doi.org/10.1038/s41467-017-01733-8 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Li, Q. Nelson, C. T. Hsu, S.-L. Damodaran, A. R. Li, L.-L. Yadav, A. K. McCarter, M. Martin, L. W. Ramesh, R. Kalinin, S. V. Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling |
title | Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling |
title_full | Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling |
title_fullStr | Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling |
title_full_unstemmed | Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling |
title_short | Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling |
title_sort | quantification of flexoelectricity in pbtio(3)/srtio(3) superlattice polar vortices using machine learning and phase-field modeling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684141/ https://www.ncbi.nlm.nih.gov/pubmed/29133906 http://dx.doi.org/10.1038/s41467-017-01733-8 |
work_keys_str_mv | AT liq quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling AT nelsonct quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling AT hsusl quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling AT damodaranar quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling AT lill quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling AT yadavak quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling AT mccarterm quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling AT martinlw quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling AT rameshr quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling AT kalininsv quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling |