Cargando…

Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling

Flexoelectricity refers to electric polarization generated by heterogeneous mechanical strains, namely strain gradients, in materials of arbitrary crystal symmetries. Despite more than 50 years of work on this effect, an accurate identification of its coupling strength remains an experimental challe...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Q., Nelson, C. T., Hsu, S.-L., Damodaran, A. R., Li, L.-L., Yadav, A. K., McCarter, M., Martin, L. W., Ramesh, R., Kalinin, S. V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684141/
https://www.ncbi.nlm.nih.gov/pubmed/29133906
http://dx.doi.org/10.1038/s41467-017-01733-8
_version_ 1783278410089365504
author Li, Q.
Nelson, C. T.
Hsu, S.-L.
Damodaran, A. R.
Li, L.-L.
Yadav, A. K.
McCarter, M.
Martin, L. W.
Ramesh, R.
Kalinin, S. V.
author_facet Li, Q.
Nelson, C. T.
Hsu, S.-L.
Damodaran, A. R.
Li, L.-L.
Yadav, A. K.
McCarter, M.
Martin, L. W.
Ramesh, R.
Kalinin, S. V.
author_sort Li, Q.
collection PubMed
description Flexoelectricity refers to electric polarization generated by heterogeneous mechanical strains, namely strain gradients, in materials of arbitrary crystal symmetries. Despite more than 50 years of work on this effect, an accurate identification of its coupling strength remains an experimental challenge for most materials, which impedes its wide recognition. Here, we show the presence of flexoelectricity in the recently discovered polar vortices in PbTiO(3)/SrTiO(3) superlattices based on a combination of machine-learning analysis of the atomic-scale electron microscopy imaging data and phenomenological phase-field modeling. By scrutinizing the influence of flexocoupling on the global vortex structure, we match theory and experiment using computer vision methodologies to determine the flexoelectric coefficients for PbTiO(3) and SrTiO(3). Our findings highlight the inherent, nontrivial role of flexoelectricity in the generation of emergent complex polarization morphologies and demonstrate a viable approach to delineating this effect, conducive to the deeper exploration of both topics.
format Online
Article
Text
id pubmed-5684141
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56841412017-11-17 Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling Li, Q. Nelson, C. T. Hsu, S.-L. Damodaran, A. R. Li, L.-L. Yadav, A. K. McCarter, M. Martin, L. W. Ramesh, R. Kalinin, S. V. Nat Commun Article Flexoelectricity refers to electric polarization generated by heterogeneous mechanical strains, namely strain gradients, in materials of arbitrary crystal symmetries. Despite more than 50 years of work on this effect, an accurate identification of its coupling strength remains an experimental challenge for most materials, which impedes its wide recognition. Here, we show the presence of flexoelectricity in the recently discovered polar vortices in PbTiO(3)/SrTiO(3) superlattices based on a combination of machine-learning analysis of the atomic-scale electron microscopy imaging data and phenomenological phase-field modeling. By scrutinizing the influence of flexocoupling on the global vortex structure, we match theory and experiment using computer vision methodologies to determine the flexoelectric coefficients for PbTiO(3) and SrTiO(3). Our findings highlight the inherent, nontrivial role of flexoelectricity in the generation of emergent complex polarization morphologies and demonstrate a viable approach to delineating this effect, conducive to the deeper exploration of both topics. Nature Publishing Group UK 2017-11-13 /pmc/articles/PMC5684141/ /pubmed/29133906 http://dx.doi.org/10.1038/s41467-017-01733-8 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Li, Q.
Nelson, C. T.
Hsu, S.-L.
Damodaran, A. R.
Li, L.-L.
Yadav, A. K.
McCarter, M.
Martin, L. W.
Ramesh, R.
Kalinin, S. V.
Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling
title Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling
title_full Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling
title_fullStr Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling
title_full_unstemmed Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling
title_short Quantification of flexoelectricity in PbTiO(3)/SrTiO(3) superlattice polar vortices using machine learning and phase-field modeling
title_sort quantification of flexoelectricity in pbtio(3)/srtio(3) superlattice polar vortices using machine learning and phase-field modeling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684141/
https://www.ncbi.nlm.nih.gov/pubmed/29133906
http://dx.doi.org/10.1038/s41467-017-01733-8
work_keys_str_mv AT liq quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling
AT nelsonct quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling
AT hsusl quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling
AT damodaranar quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling
AT lill quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling
AT yadavak quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling
AT mccarterm quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling
AT martinlw quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling
AT rameshr quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling
AT kalininsv quantificationofflexoelectricityinpbtio3srtio3superlatticepolarvorticesusingmachinelearningandphasefieldmodeling