Cargando…
Significance estimation for large scale metabolomics annotations by spectral matching
The annotation of small molecules in untargeted mass spectrometry relies on the matching of fragment spectra to reference library spectra. While various spectrum-spectrum match scores exist, the field lacks statistical methods for estimating the false discovery rates (FDR) of these annotations. We p...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684233/ https://www.ncbi.nlm.nih.gov/pubmed/29133785 http://dx.doi.org/10.1038/s41467-017-01318-5 |
_version_ | 1783278432036061184 |
---|---|
author | Scheubert, Kerstin Hufsky, Franziska Petras, Daniel Wang, Mingxun Nothias, Louis-Félix Dührkop, Kai Bandeira, Nuno Dorrestein, Pieter C. Böcker, Sebastian |
author_facet | Scheubert, Kerstin Hufsky, Franziska Petras, Daniel Wang, Mingxun Nothias, Louis-Félix Dührkop, Kai Bandeira, Nuno Dorrestein, Pieter C. Böcker, Sebastian |
author_sort | Scheubert, Kerstin |
collection | PubMed |
description | The annotation of small molecules in untargeted mass spectrometry relies on the matching of fragment spectra to reference library spectra. While various spectrum-spectrum match scores exist, the field lacks statistical methods for estimating the false discovery rates (FDR) of these annotations. We present empirical Bayes and target-decoy based methods to estimate the false discovery rate (FDR) for 70 public metabolomics data sets. We show that the spectral matching settings need to be adjusted for each project. By adjusting the scoring parameters and thresholds, the number of annotations rose, on average, by +139% (ranging from −92 up to +5705%) when compared with a default parameter set available at GNPS. The FDR estimation methods presented will enable a user to assess the scoring criteria for large scale analysis of mass spectrometry based metabolomics data that has been essential in the advancement of proteomics, transcriptomics, and genomics science. |
format | Online Article Text |
id | pubmed-5684233 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-56842332017-11-17 Significance estimation for large scale metabolomics annotations by spectral matching Scheubert, Kerstin Hufsky, Franziska Petras, Daniel Wang, Mingxun Nothias, Louis-Félix Dührkop, Kai Bandeira, Nuno Dorrestein, Pieter C. Böcker, Sebastian Nat Commun Article The annotation of small molecules in untargeted mass spectrometry relies on the matching of fragment spectra to reference library spectra. While various spectrum-spectrum match scores exist, the field lacks statistical methods for estimating the false discovery rates (FDR) of these annotations. We present empirical Bayes and target-decoy based methods to estimate the false discovery rate (FDR) for 70 public metabolomics data sets. We show that the spectral matching settings need to be adjusted for each project. By adjusting the scoring parameters and thresholds, the number of annotations rose, on average, by +139% (ranging from −92 up to +5705%) when compared with a default parameter set available at GNPS. The FDR estimation methods presented will enable a user to assess the scoring criteria for large scale analysis of mass spectrometry based metabolomics data that has been essential in the advancement of proteomics, transcriptomics, and genomics science. Nature Publishing Group UK 2017-11-14 /pmc/articles/PMC5684233/ /pubmed/29133785 http://dx.doi.org/10.1038/s41467-017-01318-5 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Scheubert, Kerstin Hufsky, Franziska Petras, Daniel Wang, Mingxun Nothias, Louis-Félix Dührkop, Kai Bandeira, Nuno Dorrestein, Pieter C. Böcker, Sebastian Significance estimation for large scale metabolomics annotations by spectral matching |
title | Significance estimation for large scale metabolomics annotations by spectral matching |
title_full | Significance estimation for large scale metabolomics annotations by spectral matching |
title_fullStr | Significance estimation for large scale metabolomics annotations by spectral matching |
title_full_unstemmed | Significance estimation for large scale metabolomics annotations by spectral matching |
title_short | Significance estimation for large scale metabolomics annotations by spectral matching |
title_sort | significance estimation for large scale metabolomics annotations by spectral matching |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684233/ https://www.ncbi.nlm.nih.gov/pubmed/29133785 http://dx.doi.org/10.1038/s41467-017-01318-5 |
work_keys_str_mv | AT scheubertkerstin significanceestimationforlargescalemetabolomicsannotationsbyspectralmatching AT hufskyfranziska significanceestimationforlargescalemetabolomicsannotationsbyspectralmatching AT petrasdaniel significanceestimationforlargescalemetabolomicsannotationsbyspectralmatching AT wangmingxun significanceestimationforlargescalemetabolomicsannotationsbyspectralmatching AT nothiaslouisfelix significanceestimationforlargescalemetabolomicsannotationsbyspectralmatching AT duhrkopkai significanceestimationforlargescalemetabolomicsannotationsbyspectralmatching AT bandeiranuno significanceestimationforlargescalemetabolomicsannotationsbyspectralmatching AT dorresteinpieterc significanceestimationforlargescalemetabolomicsannotationsbyspectralmatching AT bockersebastian significanceestimationforlargescalemetabolomicsannotationsbyspectralmatching |