Cargando…
Plug-and-play round-robin differential phase-shift quantum key distribution
The round-robin differential-phase-shift quantum key distribution (RRDPS-QKD) protocol could provide an effective way to estimate the leakage information without monitoring the signal disturbance. Moreover, the self-compensating property of plug-and-play (P&P) setup can eliminate the variations...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684331/ https://www.ncbi.nlm.nih.gov/pubmed/29133835 http://dx.doi.org/10.1038/s41598-017-15777-9 |
Sumario: | The round-robin differential-phase-shift quantum key distribution (RRDPS-QKD) protocol could provide an effective way to estimate the leakage information without monitoring the signal disturbance. Moreover, the self-compensating property of plug-and-play (P&P) setup can eliminate the variations of phase or polarization in QKD procedure. In the paper, we introduce the P&P concept into RRDPS-QKD, and propose a QKD protocol, named P&P RRDPS-QKD protocol, to make the RRDPS-QKD scheme more practical. We analyze the security, and discuss the key generation rate with infinite-intensity decoy state method. The results show that the proposed protocol is a good solution to RRDPS-QKD protocol with untrusted sources. It has a high security and its key generation rate could be as good as the protocol with trusted sources when the average input photon number N is greater than 10(6). In addition, the proposed protocol has a high noise tolerance in comparison with P&P BB84-QKD protocol. |
---|