Cargando…

Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals

This paper presents a patient-specific epileptic seizure predication method relying on the common spatial pattern- (CSP-) based feature extraction of scalp electroencephalogram (sEEG) signals. Multichannel EEG signals are traced and segmented into overlapping segments for both preictal and intericta...

Descripción completa

Detalles Bibliográficos
Autores principales: Alotaiby, Turky N., Alshebeili, Saleh A., Alotaibi, Faisal M., Alrshoud, Saud R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684608/
https://www.ncbi.nlm.nih.gov/pubmed/29225615
http://dx.doi.org/10.1155/2017/1240323
_version_ 1783278516219936768
author Alotaiby, Turky N.
Alshebeili, Saleh A.
Alotaibi, Faisal M.
Alrshoud, Saud R.
author_facet Alotaiby, Turky N.
Alshebeili, Saleh A.
Alotaibi, Faisal M.
Alrshoud, Saud R.
author_sort Alotaiby, Turky N.
collection PubMed
description This paper presents a patient-specific epileptic seizure predication method relying on the common spatial pattern- (CSP-) based feature extraction of scalp electroencephalogram (sEEG) signals. Multichannel EEG signals are traced and segmented into overlapping segments for both preictal and interictal intervals. The features extracted using CSP are used for training a linear discriminant analysis classifier, which is then employed in the testing phase. A leave-one-out cross-validation strategy is adopted in the experiments. The experimental results for seizure prediction obtained from the records of 24 patients from the CHB-MIT database reveal that the proposed predictor can achieve an average sensitivity of 0.89, an average false prediction rate of 0.39, and an average prediction time of 68.71 minutes using a 120-minute prediction horizon.
format Online
Article
Text
id pubmed-5684608
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-56846082017-12-10 Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals Alotaiby, Turky N. Alshebeili, Saleh A. Alotaibi, Faisal M. Alrshoud, Saud R. Comput Intell Neurosci Research Article This paper presents a patient-specific epileptic seizure predication method relying on the common spatial pattern- (CSP-) based feature extraction of scalp electroencephalogram (sEEG) signals. Multichannel EEG signals are traced and segmented into overlapping segments for both preictal and interictal intervals. The features extracted using CSP are used for training a linear discriminant analysis classifier, which is then employed in the testing phase. A leave-one-out cross-validation strategy is adopted in the experiments. The experimental results for seizure prediction obtained from the records of 24 patients from the CHB-MIT database reveal that the proposed predictor can achieve an average sensitivity of 0.89, an average false prediction rate of 0.39, and an average prediction time of 68.71 minutes using a 120-minute prediction horizon. Hindawi 2017 2017-10-31 /pmc/articles/PMC5684608/ /pubmed/29225615 http://dx.doi.org/10.1155/2017/1240323 Text en Copyright © 2017 Turky N. Alotaiby et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Alotaiby, Turky N.
Alshebeili, Saleh A.
Alotaibi, Faisal M.
Alrshoud, Saud R.
Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals
title Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals
title_full Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals
title_fullStr Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals
title_full_unstemmed Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals
title_short Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals
title_sort epileptic seizure prediction using csp and lda for scalp eeg signals
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684608/
https://www.ncbi.nlm.nih.gov/pubmed/29225615
http://dx.doi.org/10.1155/2017/1240323
work_keys_str_mv AT alotaibyturkyn epilepticseizurepredictionusingcspandldaforscalpeegsignals
AT alshebeilisaleha epilepticseizurepredictionusingcspandldaforscalpeegsignals
AT alotaibifaisalm epilepticseizurepredictionusingcspandldaforscalpeegsignals
AT alrshoudsaudr epilepticseizurepredictionusingcspandldaforscalpeegsignals