Cargando…
Interactive K-Means Clustering Method Based on User Behavior for Different Analysis Target in Medicine
Clustering algorithm as a basis of data analysis is widely used in analysis systems. However, as for the high dimensions of the data, the clustering algorithm may overlook the business relation between these dimensions especially in the medical fields. As a result, usually the clustering result may...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684610/ https://www.ncbi.nlm.nih.gov/pubmed/29225667 http://dx.doi.org/10.1155/2017/4915828 |
_version_ | 1783278516708573184 |
---|---|
author | Lei, Yang Yu, Dai Bin, Zhang Yang, Yang |
author_facet | Lei, Yang Yu, Dai Bin, Zhang Yang, Yang |
author_sort | Lei, Yang |
collection | PubMed |
description | Clustering algorithm as a basis of data analysis is widely used in analysis systems. However, as for the high dimensions of the data, the clustering algorithm may overlook the business relation between these dimensions especially in the medical fields. As a result, usually the clustering result may not meet the business goals of the users. Then, in the clustering process, if it can combine the knowledge of the users, that is, the doctor's knowledge or the analysis intent, the clustering result can be more satisfied. In this paper, we propose an interactive K-means clustering method to improve the user's satisfactions towards the result. The core of this method is to get the user's feedback of the clustering result, to optimize the clustering result. Then, a particle swarm optimization algorithm is used in the method to optimize the parameters, especially the weight settings in the clustering algorithm to make it reflect the user's business preference as possible. After that, based on the parameter optimization and adjustment, the clustering result can be closer to the user's requirement. Finally, we take an example in the breast cancer, to testify our method. The experiments show the better performance of our algorithm. |
format | Online Article Text |
id | pubmed-5684610 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-56846102017-12-10 Interactive K-Means Clustering Method Based on User Behavior for Different Analysis Target in Medicine Lei, Yang Yu, Dai Bin, Zhang Yang, Yang Comput Math Methods Med Research Article Clustering algorithm as a basis of data analysis is widely used in analysis systems. However, as for the high dimensions of the data, the clustering algorithm may overlook the business relation between these dimensions especially in the medical fields. As a result, usually the clustering result may not meet the business goals of the users. Then, in the clustering process, if it can combine the knowledge of the users, that is, the doctor's knowledge or the analysis intent, the clustering result can be more satisfied. In this paper, we propose an interactive K-means clustering method to improve the user's satisfactions towards the result. The core of this method is to get the user's feedback of the clustering result, to optimize the clustering result. Then, a particle swarm optimization algorithm is used in the method to optimize the parameters, especially the weight settings in the clustering algorithm to make it reflect the user's business preference as possible. After that, based on the parameter optimization and adjustment, the clustering result can be closer to the user's requirement. Finally, we take an example in the breast cancer, to testify our method. The experiments show the better performance of our algorithm. Hindawi 2017 2017-10-26 /pmc/articles/PMC5684610/ /pubmed/29225667 http://dx.doi.org/10.1155/2017/4915828 Text en Copyright © 2017 Yang Lei et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lei, Yang Yu, Dai Bin, Zhang Yang, Yang Interactive K-Means Clustering Method Based on User Behavior for Different Analysis Target in Medicine |
title | Interactive K-Means Clustering Method Based on User Behavior for Different Analysis Target in Medicine |
title_full | Interactive K-Means Clustering Method Based on User Behavior for Different Analysis Target in Medicine |
title_fullStr | Interactive K-Means Clustering Method Based on User Behavior for Different Analysis Target in Medicine |
title_full_unstemmed | Interactive K-Means Clustering Method Based on User Behavior for Different Analysis Target in Medicine |
title_short | Interactive K-Means Clustering Method Based on User Behavior for Different Analysis Target in Medicine |
title_sort | interactive k-means clustering method based on user behavior for different analysis target in medicine |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684610/ https://www.ncbi.nlm.nih.gov/pubmed/29225667 http://dx.doi.org/10.1155/2017/4915828 |
work_keys_str_mv | AT leiyang interactivekmeansclusteringmethodbasedonuserbehaviorfordifferentanalysistargetinmedicine AT yudai interactivekmeansclusteringmethodbasedonuserbehaviorfordifferentanalysistargetinmedicine AT binzhang interactivekmeansclusteringmethodbasedonuserbehaviorfordifferentanalysistargetinmedicine AT yangyang interactivekmeansclusteringmethodbasedonuserbehaviorfordifferentanalysistargetinmedicine |