Cargando…

CRISPR-Cas9-induced t(11;19)/MLL-ENL translocations initiate leukemia in human hematopoietic progenitor cells in vivo

Chromosomal translocations that generate oncogenic fusion proteins are causative for most pediatric leukemias and frequently affect the MLL/KMT2A gene. In vivo modeling of bona fide chromosomal translocations in human hematopoietic stem and progenitor cells is challenging but essential to determine...

Descripción completa

Detalles Bibliográficos
Autores principales: Reimer, Jana, Knöß, Sabine, Labuhn, Maurice, Charpentier, Emmanuelle M., Göhring, Gudrun, Schlegelberger, Brigitte, Klusmann, Jan-Henning, Heckl, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ferrata Storti Foundation 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685230/
https://www.ncbi.nlm.nih.gov/pubmed/28572162
http://dx.doi.org/10.3324/haematol.2017.164046
Descripción
Sumario:Chromosomal translocations that generate oncogenic fusion proteins are causative for most pediatric leukemias and frequently affect the MLL/KMT2A gene. In vivo modeling of bona fide chromosomal translocations in human hematopoietic stem and progenitor cells is challenging but essential to determine their actual leukemogenic potential. We therefore developed an advanced lentiviral CRISPR-Cas9 vector that efficiently transduced human CD34(+) hematopoietic stem and progenitor cells and induced the t(11;19)/MLL-ENL translocation. Leveraging this system, we could demonstrate that hematopoietic stem and progenitor cells harboring the translocation showed only a transient clonal growth advantage in vitro. In contrast, t(11;19)/MLL-ENL-harboring CD34(+) hematopoietic stem and progenitor cells not only showed long-term engraftment in primary immunodeficient recipients, but t(11;19)/MLL-ENL also served as a first hit to initiate a monocytic leukemia-like disease. Interestingly, secondary recipients developed acute lymphoblastic leukemia with incomplete penetrance. These findings indicate that environmental cues not only contribute to the disease phenotype, but also to t(11;19)/MLL-ENL-mediated oncogenic transformation itself. Thus, by investigating the true chromosomal t(11;19) rearrangement in its natural genomic context, our study emphasizes the importance of environmental cues for the pathogenesis of pediatric leukemias, opening an avenue for novel treatment options.