Cargando…
Learning causal networks with latent variables from multivariate information in genomic data
Learning causal networks from large-scale genomic data remains challenging in absence of time series or controlled perturbation experiments. We report an information- theoretic method which learns a large class of causal or non-causal graphical models from purely observational data, while including...
Autores principales: | Verny, Louis, Sella, Nadir, Affeldt, Séverine, Singh, Param Priya, Isambert, Hervé |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685645/ https://www.ncbi.nlm.nih.gov/pubmed/28968390 http://dx.doi.org/10.1371/journal.pcbi.1005662 |
Ejemplares similares
-
3off2: A network reconstruction algorithm based on 2-point and 3-point information statistics
por: Affeldt, Séverine, et al.
Publicado: (2016) -
Learning clinical networks from medical records based on information estimates in mixed-type data
por: Cabeli, Vincent, et al.
Publicado: (2020) -
Human Dominant Disease Genes Are Enriched in Paralogs Originating from Whole Genome Duplication
por: Singh, Param Priya, et al.
Publicado: (2014) -
On the expansion of “dangerous” gene families in vertebrates
por: Affeldt, Séverine, et al.
Publicado: (2014) -
OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates
por: Singh, Param Priya, et al.
Publicado: (2020)