Cargando…

MIND4-17 protects retinal pigment epithelium cells and retinal ganglion cells from UV

Nrf2 activation would efficiently protect retinal cells from UV radiation (UVR). Recent studies have developed a Nrf2-targeting thiazole-containing compound MIND4-17, which activates Nrf2 through blocking its association with Keap1. In the current study, we demonstrated that pretreatment with MIND4-...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chaopeng, Yan, Kang, Wang, Wenqi, Bai, Qing, Dai, Changming, Li, Xiaofeng, Huang, Darui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685709/
https://www.ncbi.nlm.nih.gov/pubmed/29163788
http://dx.doi.org/10.18632/oncotarget.21131
Descripción
Sumario:Nrf2 activation would efficiently protect retinal cells from UV radiation (UVR). Recent studies have developed a Nrf2-targeting thiazole-containing compound MIND4-17, which activates Nrf2 through blocking its association with Keap1. In the current study, we demonstrated that pretreatment with MIND4-17 efficiently protected retinal pigment epithelium (RPE) cells (RPEs) and retinal ganglion cells (RGCs) from UVR. UVR-induced apoptosis in the retinal cells was also largely attenuated by MIND4-17 pretreatment. MIND4-17 presumably separated Nrf2 from Keap1, allowing its stabilization and accumulation in retinal cells, which then translocated to cell nuclei and promoted transcription of ARE-dependent anti-oxidant genes, including HO1, NQO1 and GCLM. Significantly, shRNA-mediated knockdown of Nrf2 almost completely abolished MIND4-17-induced cytoprotection against UVR. Further studies showed that MIND4-17 largely ameliorated UVR-induced ROS production, lipid peroxidation and DNA damages in RPEs and RGCs. Together, MIND4-17 protects retinal cells from UVR by activating Nrf2 signaling.