Cargando…
Structural basis of the therapeutic anti-PD-L1 antibody atezolizumab
Monoclonal antibodies targeting PD-1/PD-L1 signaling pathway have achieved unprecedented success in cancer treatment over the last few years. Atezolizumab is the first PD-L1 monoclonal antibody approved by US FDA for cancer therapy; however the molecular basis of atezolizumab in blocking PD-1/PD-L1...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685743/ https://www.ncbi.nlm.nih.gov/pubmed/29163822 http://dx.doi.org/10.18632/oncotarget.21652 |
Sumario: | Monoclonal antibodies targeting PD-1/PD-L1 signaling pathway have achieved unprecedented success in cancer treatment over the last few years. Atezolizumab is the first PD-L1 monoclonal antibody approved by US FDA for cancer therapy; however the molecular basis of atezolizumab in blocking PD-1/PD-L1 interaction is not fully understood. Here we have solved the crystal structure of PD-L1/atezolizumab complex at 2.9 angstrom resolution. The structure shows that atezolizumab binds the front beta-sheet of PD-L1 through three CDR loops from the heavy chain and one CDR loop from the light chain. The binding involves extensive hydrogen-bonding and hydrophobic interactions. Notably there are multiple aromatic residues from the CDR loops forming Pi-Pi stacking or cation-Pi interactions within the center of the binding interface and the buried surface area is more than 2000 Å(2), which is the largest amongst all the known PD-L1/antibody structures. Mutagenesis study revealed that two hot-spot residues (E58, R113) of PD-L1 contribute significantly to the binding of atezolizumab. The structure also shows that atezolizumab binds PD-L1 with a distinct heavy and light chain orientation and it blocks PD-1/PD-L1 interaction through competing with PD-1 for the same PD-L1 surface area. Taken together, the complex structure of PD-L1/atezolizumab solved here revealed the molecular mechanism of atezolizumab in immunotherapy and provides basis for future monoclonal antibody optimization and rational design of small chemical compounds targeting PD-L1 surface. |
---|