Cargando…

Prognostic value of intratumoral metabolic heterogeneity on F-18 fluorodeoxyglucose positron emission tomography/computed tomography in locally advanced cervical cancer patients treated with concurrent chemoradiotherapy

OBJECTIVE: To evaluate the prognostic value for predicting tumor recurrence of intratumoral metabolic heterogeneity and traditional quantitative metabolic parameters on pre-treatment F-18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in patients with locally ad...

Descripción completa

Detalles Bibliográficos
Autores principales: Chong, Gun Oh, Lee, Won Kee, Jeong, Shin Young, Park, Shin-Hyung, Lee, Yoon Hee, Lee, Sang-Woo, Hong, Dae Gy, Kim, Jae-Chul, Lee, Yoon Soon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685760/
https://www.ncbi.nlm.nih.gov/pubmed/29163839
http://dx.doi.org/10.18632/oncotarget.18769
Descripción
Sumario:OBJECTIVE: To evaluate the prognostic value for predicting tumor recurrence of intratumoral metabolic heterogeneity and traditional quantitative metabolic parameters on pre-treatment F-18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in patients with locally advanced cervical cancer treated with concurrent chemoradiotherapy (CCRT). MATERIALS AND METHODS: Ninety-three patients with biopsy-proven cervical cancer and treated with CCRT (FIGO stage IIB-IV) were enrolled in this study. The traditional metabolic parameters of the primary tumor, regional lymph node, and whole body (maximum standardized uptake value [SUVmax], metabolic tumor volume [MTV], and total lesion glycolysis), and intratumoral heterogeneity factor (HF) were measured on pre-treatment 18F-FDG PET/CT images. Univariate and multivariate analyses for disease-free survival (DFS) were performed using clinical and metabolic parameters. The additional HF prognostic value was evaluated by means of time-dependent receiver operating characteristic curve, integrated discrimination improvement, and net reclassification improvement. RESULTS: On multivariate analysis, nodal SUVmax (hazard ratio 3.60; 95% CI, 1.66–7.85; p = 0.0012) and whole body MTV (WBMTV; hazard ratio 3.15; 95% CI, 1.17–8.53; p = 0.0236) were significant prognostic factors for DFS. When HF was combined with nodal SUVmax and WBMTV, a significant improvement in discrimination for recurrence was observed compared with nodal SUVmax alone (area under curve 0.817 vs. 0.732; p = 0.0028). CONCLUSIONS: HF did not show superiority over traditional metabolic parameters. However, when HF was combined with nodal SUVmax and WBMTV, the predictive value for tumor recurrence improved. Therefore, HF may be a useful additional prognostic biomarker to improve the prognostic value of traditional metabolic parameters on 18F-FDG PET/CT.