Cargando…
Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI
Radiomics deals with the high throughput extraction of quantitative textural information from radiological images that not visually perceivable by radiologists. However, the biological correlation between radiomic features and different tissues of interest has not been established. To that end, we p...
Autores principales: | Parekh, Vishwa S., Jacobs, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686135/ https://www.ncbi.nlm.nih.gov/pubmed/29152563 http://dx.doi.org/10.1038/s41523-017-0045-3 |
Ejemplares similares
-
Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging
por: Parekh, Vishwa S., et al.
Publicado: (2020) -
Integrated Multiparametric Radiomics and Informatics System for Characterizing Breast Tumor Characteristics with the OncotypeDX Gene Assay
por: Jacobs, Michael A., et al.
Publicado: (2020) -
Multiparametric radiomic tissue signature and machine learning for distinguishing radiation necrosis from tumor progression after stereotactic radiosurgery
por: Chen, Xuguang, et al.
Publicado: (2021) -
Radiomics and Machine Learning with Multiparametric Breast MRI for Improved Diagnostic Accuracy in Breast Cancer Diagnosis
por: Daimiel Naranjo, Isaac, et al.
Publicado: (2021) -
Deep learning and radiomics in precision medicine
por: Parekh, Vishwa S., et al.
Publicado: (2019)