Cargando…

Changes in Quality Characteristics of Pork Patties Containing Antioxidative Fish Skin Peptide or Fish Skin Peptide-loaded Nanoliposomes during Refrigerated Storage

Marine fish skin peptides (FSP) have been widely studied due to their antioxidant and antimicrobial properties. We aimed to use a natural antioxidant, FSP, to replacing synthetic preservatives in a pork patty model, which is safer for human body. Moreover, nano-liposome technology can be applied for...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Jing-Jing, Lee, Jung-Gyu, Lee, Sang-Yoon, Kim, Soojin, Choi, Mi-Jung, Cho, Youngjae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Food Science of Animal Resources 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686334/
https://www.ncbi.nlm.nih.gov/pubmed/29147099
http://dx.doi.org/10.5851/kosfa.2017.37.5.752
Descripción
Sumario:Marine fish skin peptides (FSP) have been widely studied due to their antioxidant and antimicrobial properties. We aimed to use a natural antioxidant, FSP, to replacing synthetic preservatives in a pork patty model, which is safer for human body. Moreover, nano-liposome technology can be applied for masking the fishy smell and improving the stability of this peptide. Therefore, in this study, the effects of FSP and FSP-loaded liposomes (FSPL) on pork patty were evaluated through the tests of thiobarbituric acid reactive substances (TBARS), color, cooking loss, texture, volatile basic nitrogen (VBN), and the pH value, during 14 d of refrigerated (4°C) storage. The results showed that all FSP-treated patties had lower TBARS values than control patties, which indicated an inhibitory effect of FSP on lipid oxidation. This effect in the patties depended on the FSP concentration. However, FSPL-treated patties showed significantly higher and undesirable TBARS values compared to the control, and this effect depended on the FSPL concentration. None of the physicochemical results showed remarkable changes except the pH and VBN values. Therefore, this study provides evidence that FSP has great potential to inhibit the lipid oxidation of pork patties and is capable of maintaining the quality and extending the shelf life. However, it is necessary to study the application of FSP treatments greater than 3% to improve the antioxidant effect on pork patties and search for other coating materials and technology to reduce the drawbacks of FSP.