Cargando…

Efficient in vitro delivery of Noggin siRNA enhances osteoblastogenesis

Several types of serious bone defects would not heal without invasive clinical intervention. One approach to such defects is to enhance the capacity of bone-formation cells. Exogenous bone morphogenetic proteins (BMP) have been utilized to positively regulate matrix mineralization and osteoblastogen...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghadakzadeh, S., Hamdy, R.C., Tabrizian, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686427/
https://www.ncbi.nlm.nih.gov/pubmed/29167826
http://dx.doi.org/10.1016/j.heliyon.2017.e00450
_version_ 1783278782124130304
author Ghadakzadeh, S.
Hamdy, R.C.
Tabrizian, M.
author_facet Ghadakzadeh, S.
Hamdy, R.C.
Tabrizian, M.
author_sort Ghadakzadeh, S.
collection PubMed
description Several types of serious bone defects would not heal without invasive clinical intervention. One approach to such defects is to enhance the capacity of bone-formation cells. Exogenous bone morphogenetic proteins (BMP) have been utilized to positively regulate matrix mineralization and osteoblastogenesis, however, numerous adverse effects are associated with this approach. Noggin, a potent antagonist of BMPs, is an ideal candidate to target and decrease the need for supraphysiological doses of BMPs. In the current research we report a novel siRNA-mediated gene knock-down strategy to down-regulate Noggin. We utilized a lipid nanoparticle (LNP) delivery strategy in pre-osteoblastic rat cells. In vitro LNP-siRNA treatment caused inconsequential cell toxicity and transfection was achieved in over 85% of cells. Noggin siRNA treatment successfully down-regulated cellular Noggin protein levels and enhanced BMP signal activity which in turn resulted in significantly increased osteoblast differentiation and extracellular matrix mineralization evidenced by histological assessments. Gene expression analysis showed that targeting Noggin specifically in bone cells would not lead to a compensatory effect from other BMP negative regulators such as Gremlin and Chordin. The results from this study support the notion that novel therapeutics targeting Noggin have the clinically relevant potential to enhance bone formation without the need for toxic doses of exogenous BMPs. Such treatments will undeniably provide safe and economical treatments for individuals whose poor bone repair results in permanent morbidity and disability.
format Online
Article
Text
id pubmed-5686427
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-56864272017-11-22 Efficient in vitro delivery of Noggin siRNA enhances osteoblastogenesis Ghadakzadeh, S. Hamdy, R.C. Tabrizian, M. Heliyon Article Several types of serious bone defects would not heal without invasive clinical intervention. One approach to such defects is to enhance the capacity of bone-formation cells. Exogenous bone morphogenetic proteins (BMP) have been utilized to positively regulate matrix mineralization and osteoblastogenesis, however, numerous adverse effects are associated with this approach. Noggin, a potent antagonist of BMPs, is an ideal candidate to target and decrease the need for supraphysiological doses of BMPs. In the current research we report a novel siRNA-mediated gene knock-down strategy to down-regulate Noggin. We utilized a lipid nanoparticle (LNP) delivery strategy in pre-osteoblastic rat cells. In vitro LNP-siRNA treatment caused inconsequential cell toxicity and transfection was achieved in over 85% of cells. Noggin siRNA treatment successfully down-regulated cellular Noggin protein levels and enhanced BMP signal activity which in turn resulted in significantly increased osteoblast differentiation and extracellular matrix mineralization evidenced by histological assessments. Gene expression analysis showed that targeting Noggin specifically in bone cells would not lead to a compensatory effect from other BMP negative regulators such as Gremlin and Chordin. The results from this study support the notion that novel therapeutics targeting Noggin have the clinically relevant potential to enhance bone formation without the need for toxic doses of exogenous BMPs. Such treatments will undeniably provide safe and economical treatments for individuals whose poor bone repair results in permanent morbidity and disability. Elsevier 2017-11-13 /pmc/articles/PMC5686427/ /pubmed/29167826 http://dx.doi.org/10.1016/j.heliyon.2017.e00450 Text en © 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Ghadakzadeh, S.
Hamdy, R.C.
Tabrizian, M.
Efficient in vitro delivery of Noggin siRNA enhances osteoblastogenesis
title Efficient in vitro delivery of Noggin siRNA enhances osteoblastogenesis
title_full Efficient in vitro delivery of Noggin siRNA enhances osteoblastogenesis
title_fullStr Efficient in vitro delivery of Noggin siRNA enhances osteoblastogenesis
title_full_unstemmed Efficient in vitro delivery of Noggin siRNA enhances osteoblastogenesis
title_short Efficient in vitro delivery of Noggin siRNA enhances osteoblastogenesis
title_sort efficient in vitro delivery of noggin sirna enhances osteoblastogenesis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686427/
https://www.ncbi.nlm.nih.gov/pubmed/29167826
http://dx.doi.org/10.1016/j.heliyon.2017.e00450
work_keys_str_mv AT ghadakzadehs efficientinvitrodeliveryofnogginsirnaenhancesosteoblastogenesis
AT hamdyrc efficientinvitrodeliveryofnogginsirnaenhancesosteoblastogenesis
AT tabrizianm efficientinvitrodeliveryofnogginsirnaenhancesosteoblastogenesis