Cargando…

Stromal regulation of prostate cancer cell growth by mevalonate pathway enzymes HMGCS1 and HMGCR

It has been suggested that the tumor microenvironment plays an important role in tumor progression, acquisition of androgen independence, and distant metastasis in prostate cancer (PC). However, little is known about the transcriptional basis of cellular interactions in the human PC microenvironment...

Descripción completa

Detalles Bibliográficos
Autores principales: Ashida, Shingo, Kawada, Chiaki, Inoue, Keiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686443/
https://www.ncbi.nlm.nih.gov/pubmed/29163687
http://dx.doi.org/10.3892/ol.2017.7025
Descripción
Sumario:It has been suggested that the tumor microenvironment plays an important role in tumor progression, acquisition of androgen independence, and distant metastasis in prostate cancer (PC). However, little is known about the transcriptional basis of cellular interactions in the human PC microenvironment. To clarify the mechanism of PC progression and metastasis, we investigated the interaction of PC, epithelial, and stromal cells using genome-wide gene expression profiling. We hypothesized that PC cells could induce stromal cells to differentiate into so-called cancer-associated fibroblasts (CAFs), which might contribute to cancer invasion and metastasis. Genes upregulated in normal human prostate stromal cells (PrSC) co-cultured with human PC cells (LNCaP) included the mevalonate pathway enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Knockdown of endogenous HMGCS1 or HMGCR in PC cells by shRNA resulted in a significant reduction of PC cell viability. Importantly, exogenous overexpression of HMGCS1 or HMGCR in either PC cells or prostate stromal cells stimulated PC cell growth, suggesting a possible autocrine/paracrine mechanism of action. Immunohistochemical analysis confirmed that HMGCS1 and HMGCR were overexpressed in PC stroma, especially in early stage PC. These results provide clues to the molecular mechanisms underlying PC invasion and metastasis, and suggest that HMGCS1 and HMGCR in PC, as well as in PC stroma, might serve as molecular targets for the treatment of PC.