Cargando…
ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data
BACKGROUND: With the development of chromosomal conformation capturing techniques, particularly, the Hi-C technique, the study of the spatial conformation of a genome is becoming an important topic in bioinformatics and computational biology. The Hi-C technique can generate genome-wide chromosomal i...
Autores principales: | Oluwadare, Oluwatosin, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686814/ https://www.ncbi.nlm.nih.gov/pubmed/29137603 http://dx.doi.org/10.1186/s12859-017-1931-2 |
Ejemplares similares
-
HiTAD: detecting the structural and functional hierarchies of topologically associating domains from chromatin interactions
por: Wang, Xiao-Tao, et al.
Publicado: (2017) -
An Overview of Methods for Reconstructing 3-D Chromosome and Genome Structures from Hi-C Data
por: Oluwadare, Oluwatosin, et al.
Publicado: (2019) -
GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data
por: Oluwadare, Oluwatosin, et al.
Publicado: (2020) -
Correction to: GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data
por: Oluwadare, Oluwatosin, et al.
Publicado: (2020) -
HiCARN: resolution enhancement of Hi-C data using cascading residual networks
por: Hicks, Parker, et al.
Publicado: (2022)