Cargando…
A deep learning and novelty detection framework for rapid phenotyping in high-content screening
Supervised machine learning is a powerful and widely used method for analyzing high-content screening data. Despite its accuracy, efficiency, and versatility, supervised machine learning has drawbacks, most notably its dependence on a priori knowledge of expected phenotypes and time-consuming classi...
Autores principales: | Sommer, Christoph, Hoefler, Rudolf, Samwer, Matthias, Gerlich, Daniel W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5687041/ https://www.ncbi.nlm.nih.gov/pubmed/28954863 http://dx.doi.org/10.1091/mbc.E17-05-0333 |
Ejemplares similares
-
DNA Cross-Bridging Shapes a Single Nucleus from a Set of Mitotic Chromosomes
por: Samwer, Matthias, et al.
Publicado: (2017) -
Unleashing high content screening in hit detection – Benchmarking AI workflows including novelty detection
por: Kupczyk, Erwin, et al.
Publicado: (2022) -
CellH5: a format for data exchange in high-content screening
por: Sommer, Christoph, et al.
Publicado: (2013) -
Automated microscopy for high-content RNAi screening
por: Conrad, Christian, et al.
Publicado: (2010) -
Vision-Based Novelty Detection Using Deep Features and Evolved Novelty Filters for Specific Robotic Exploration and Inspection Tasks
por: Contreras-Cruz, Marco Antonio, et al.
Publicado: (2019)