Cargando…

Urokinase-type plasminogen activator receptor inhibits apoptosis in triple-negative breast cancer through miR-17/20a suppression of death receptors 4 and 5

Dissection and understanding of the molecular pathways driving triple-negative breast cancer (TNBC) are urgently needed to develop efficient tailored therapies. Aside from cell invasion and metastasis, the urokinase-type plasminogen activator receptor (uPAR) has been linked to apoptosis resistance i...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xin, Wu, Bo, Chen, Lizhao, Ju, Ying, Li, Changfei, Meng, Songdong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5687634/
https://www.ncbi.nlm.nih.gov/pubmed/29179464
http://dx.doi.org/10.18632/oncotarget.20435
Descripción
Sumario:Dissection and understanding of the molecular pathways driving triple-negative breast cancer (TNBC) are urgently needed to develop efficient tailored therapies. Aside from cell invasion and metastasis, the urokinase-type plasminogen activator receptor (uPAR) has been linked to apoptosis resistance in breast tumors. We explored the mechanism of uPAR-disrupted apoptosis in breast cancer. We found that depletion of uPAR by RNAi increases death receptor 4 (DR4) and death receptor 5 (DR5) expression and triggers TRAIL-induced apoptosis in TNBC cells. The microRNAs miR-17-5p and miR-20a inhibit cell apoptosis via suppression of DR4/DR5. We provide evidence that uPAR enhances miR-17-5p/20a expression through upregulation of c-myc. Blocking miR-17-5p/20a with antagomiRNA suppressed the growth of uPAR-overexpressing breast tumor xenografts in mice. These results indicate that uPAR suppresses cell apoptosis by inhibiting the c-myc-miR-17/5p/20a-DR4/DR5 pathway. Therapy directed at uPAR-induced miR-17/20a is a potential option for breast cancer and TNBC.