Cargando…
Hyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission
Podocyte injury underlies many forms of glomerular diseases. Our previous study showed that hyperoside, a naturally occurring flavonoid, could decrease albuminuria at the early stage of diabetic nephropathy by ameliorating renal damage and podocyte injury. However, its protective mechanism against p...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5687646/ https://www.ncbi.nlm.nih.gov/pubmed/29179476 http://dx.doi.org/10.18632/oncotarget.21287 |
_version_ | 1783278999487643648 |
---|---|
author | Chen, Zhuyun An, Xiaofei Liu, Xi Qi, Jia Ding, Dafa Zhao, Min Duan, Suyan Huang, Zhimin Zhang, Chengning Wu, Lin Zhang, Bo Zhang, Aihua Yuan, Yanggang Xing, Changying |
author_facet | Chen, Zhuyun An, Xiaofei Liu, Xi Qi, Jia Ding, Dafa Zhao, Min Duan, Suyan Huang, Zhimin Zhang, Chengning Wu, Lin Zhang, Bo Zhang, Aihua Yuan, Yanggang Xing, Changying |
author_sort | Chen, Zhuyun |
collection | PubMed |
description | Podocyte injury underlies many forms of glomerular diseases. Our previous study showed that hyperoside, a naturally occurring flavonoid, could decrease albuminuria at the early stage of diabetic nephropathy by ameliorating renal damage and podocyte injury. However, its protective mechanism against podocyte injury is unknown. A previous study demonstrated that hyperoside might inhibit amyloid β-protein-induced neurotoxicity by suppressing mitochondrial dysfunction. Both mitochondrial dysfunction and its upstream determinant mitochondrial fission were closely related to podocyte injury. Thus, in the current study, we tested the effect of hyperoside on mitochondrial dysfunction and mitochondrial fission in adriamycin (ADR)-induced podocyte injury. In the mice model of ADR-induced nephropathy, hyperoside treatment inhibited ADR-induced albuminuria and podocyte injury. Meanwhile, hyperoside also blocked ADR-induced mitochondrial dysfunction and mitochondrial fission. Consistently, in cultured human podocytes, hyperoside suppressed ADR-induced podocyte injury, mitochondrial dysfunction and mitochondrial fission. All these results indicated that hyperoside might inhibit ADR-induced mitochondrial dysfunction and podocyte injury through suppressing mitochondrial fission both in vivo and in vitro. The underlying mechanisms which we revealed support the therapeutic effects of hyperoside for a broad range of glomerular diseases. |
format | Online Article Text |
id | pubmed-5687646 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-56876462017-11-20 Hyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission Chen, Zhuyun An, Xiaofei Liu, Xi Qi, Jia Ding, Dafa Zhao, Min Duan, Suyan Huang, Zhimin Zhang, Chengning Wu, Lin Zhang, Bo Zhang, Aihua Yuan, Yanggang Xing, Changying Oncotarget Research Paper Podocyte injury underlies many forms of glomerular diseases. Our previous study showed that hyperoside, a naturally occurring flavonoid, could decrease albuminuria at the early stage of diabetic nephropathy by ameliorating renal damage and podocyte injury. However, its protective mechanism against podocyte injury is unknown. A previous study demonstrated that hyperoside might inhibit amyloid β-protein-induced neurotoxicity by suppressing mitochondrial dysfunction. Both mitochondrial dysfunction and its upstream determinant mitochondrial fission were closely related to podocyte injury. Thus, in the current study, we tested the effect of hyperoside on mitochondrial dysfunction and mitochondrial fission in adriamycin (ADR)-induced podocyte injury. In the mice model of ADR-induced nephropathy, hyperoside treatment inhibited ADR-induced albuminuria and podocyte injury. Meanwhile, hyperoside also blocked ADR-induced mitochondrial dysfunction and mitochondrial fission. Consistently, in cultured human podocytes, hyperoside suppressed ADR-induced podocyte injury, mitochondrial dysfunction and mitochondrial fission. All these results indicated that hyperoside might inhibit ADR-induced mitochondrial dysfunction and podocyte injury through suppressing mitochondrial fission both in vivo and in vitro. The underlying mechanisms which we revealed support the therapeutic effects of hyperoside for a broad range of glomerular diseases. Impact Journals LLC 2017-09-28 /pmc/articles/PMC5687646/ /pubmed/29179476 http://dx.doi.org/10.18632/oncotarget.21287 Text en Copyright: © 2017 Chen et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Chen, Zhuyun An, Xiaofei Liu, Xi Qi, Jia Ding, Dafa Zhao, Min Duan, Suyan Huang, Zhimin Zhang, Chengning Wu, Lin Zhang, Bo Zhang, Aihua Yuan, Yanggang Xing, Changying Hyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission |
title | Hyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission |
title_full | Hyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission |
title_fullStr | Hyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission |
title_full_unstemmed | Hyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission |
title_short | Hyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission |
title_sort | hyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5687646/ https://www.ncbi.nlm.nih.gov/pubmed/29179476 http://dx.doi.org/10.18632/oncotarget.21287 |
work_keys_str_mv | AT chenzhuyun hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission AT anxiaofei hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission AT liuxi hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission AT qijia hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission AT dingdafa hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission AT zhaomin hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission AT duansuyan hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission AT huangzhimin hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission AT zhangchengning hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission AT wulin hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission AT zhangbo hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission AT zhangaihua hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission AT yuanyanggang hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission AT xingchangying hyperosidealleviatesadriamycininducedpodocyteinjuryviainhibitingmitochondrialfission |