Cargando…

Telomere length heterogeneity in placenta revealed with high-resolution telomere length analysis

INTRODUCTION: Telomeres, are composed of tandem repeat sequences located at the ends of chromosomes and are required to maintain genomic stability. Telomeres can become shorter due to cell division and specific lifestyle factors. Critically shortened telomeres are linked to cellular dysfunction, sen...

Descripción completa

Detalles Bibliográficos
Autores principales: Garcia-Martin, I., Janssen, A.B., Jones, R.E., Grimstead, J.W., Penketh, R.J.A., Baird, D.M., John, R.M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5687939/
https://www.ncbi.nlm.nih.gov/pubmed/29108638
http://dx.doi.org/10.1016/j.placenta.2017.09.007
Descripción
Sumario:INTRODUCTION: Telomeres, are composed of tandem repeat sequences located at the ends of chromosomes and are required to maintain genomic stability. Telomeres can become shorter due to cell division and specific lifestyle factors. Critically shortened telomeres are linked to cellular dysfunction, senescence and aging. A number of studies have used low resolution techniques to assess telomere length in the placenta. In this study, we applied Single Telomere Length Analysis (STELA) which provides high-resolution chromosome specific telomere length profiles to ask whether we could obtain more detailed information on the length of individual telomeres in the placenta. METHODS: Term placentas (37–42 weeks) were collected from women delivering at University Hospital of Wales or Royal Gwent Hospital within 2 h of delivery. Multiple telomere-length distributions were determined using STELA. Intraplacental variation of telomere length was analysed (N = 5). Telomere length distributions were compared between labouring (N = 10) and non-labouring (N = 11) participants. Finally, telomere length was compared between female (N = 17) and male (N = 20) placenta. RESULTS: There were no significant influences of sampling site, mode of delivery or foetal sex on the telomere-length distributions obtained. The mean telomere length was 7.7 kb ranging from 5.0 kb to 11.7 kb across all samples (N = 42) and longer compared with other human tissues at birth. STELA also revealed considerable telomere length heterogeneity within samples. CONCLUSIONS: We have shown that STELA can be used to study telomere length homeostasis in the placenta regardless of sampling site, mode of delivery and foetal sex. Moreover, as each amplicon is derived from a single telomeric molecule, from a single cell, STELA can reveal the full detail of telomere-length distributions, including telomeres within the length ranges observed in senescent cells. STELA thus provides a new tool to interrogate the relationship between telomere length and pregnancy complications linked to placental dysfunction.