Cargando…
Clinical Decision Support Model to Predict Occlusal Force in Bruxism Patients
OBJECTIVES: The aim of this study was to develop a decision support model for the prediction of occlusal force from the size and color of articulating paper markings in bruxism patients. METHODS: We used the information from the datasets of 30 bruxism patients in which digital measurements of the si...
Autores principales: | Thanathornwong, Bhornsawan, Suebnukarn, Siriwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688024/ https://www.ncbi.nlm.nih.gov/pubmed/29181234 http://dx.doi.org/10.4258/hir.2017.23.4.255 |
Ejemplares similares
-
Clinical Decision Support System for Geriatric Dental Treatment Using a Bayesian Network and a Convolutional Neural Network
por: Thanathornwong, Bhornsawan, et al.
Publicado: (2023) -
Automatic detection of periodontal compromised teeth in digital panoramic radiographs using faster regional convolutional neural networks
por: Thanathornwong, Bhornsawan, et al.
Publicado: (2020) -
Bayesian-Based Decision Support System for Assessing the Needs for Orthodontic Treatment
por: Thanathornwong, Bhornsawan
Publicado: (2018) -
Comparative Dissemination of Aerosol and Splatter Using Suction Device during Ultrasonic Scaling: A Pilot Study
por: Engsomboon, Nutthawadee, et al.
Publicado: (2022) -
Effects of Nanocrystal Cellulose from Bamboo on the Flexural Strength of Acrylic Resin: In Vitro
por: Aupaphong, Visakha, et al.
Publicado: (2022)