Cargando…
Sedentary behavior and altered metabolic activity by AgNPs ingestion in Drosophila melanogaster
Among several nanoparticles, silver nanoparticles (AgNPs) are extensively used in a wide variety of consumer products due to its unique antimicrobial property. However, dosage effect of AgNPs on behavior and metabolic activity in an in vivo condition is not well studied. Therefore, to elucidate the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688153/ https://www.ncbi.nlm.nih.gov/pubmed/29142316 http://dx.doi.org/10.1038/s41598-017-15645-6 |
Sumario: | Among several nanoparticles, silver nanoparticles (AgNPs) are extensively used in a wide variety of consumer products due to its unique antimicrobial property. However, dosage effect of AgNPs on behavior and metabolic activity in an in vivo condition is not well studied. Therefore, to elucidate the impact of AgNPs on behavior and metabolism, systematic and detailed dosages study of AgNPs was performed by rearing Drosophila melanogaster on food without and with AgNPs. We found that dietary intake of AgNPs at early larval stage leads to behavioral abnormalities such as poor crawling and climbing ability of larvae and adults respectively. Interestingly, intake of higher dosage of AgNPs at larval stage significantly altered metabolic activity that includes lipid, carbohydrate and protein levels in adult flies. Further, detailed analysis revealed that AgNPs causes remarkable reduction in the number of lipid droplets (LDs) which are lipid storage organelles in Drosophila. We also observed an increased production of reactive oxygen species (ROS) in AgNPs ingested larval tissues. These results strongly imply that higher dosage of AgNPs ingestion from early larval stage of Drosophila is inimical and thereby draws concern towards the usage of AgNPs in consumer goods. |
---|