Cargando…
Nanotribological Properties of Graphite Intercalation Compounds: AFM Studies
Tetraalkylammonium salts have larger ions than metal ions, which can greatly change the interlayer space and energy, and then potentially tune the properties of graphite. In this work, various graphite intercalation compounds (GICs) have been synthesized by intercalating tetraoctylammonium bromide (...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688367/ https://www.ncbi.nlm.nih.gov/pubmed/29230257 http://dx.doi.org/10.1155/2017/9438573 |
Sumario: | Tetraalkylammonium salts have larger ions than metal ions, which can greatly change the interlayer space and energy, and then potentially tune the properties of graphite. In this work, various graphite intercalation compounds (GICs) have been synthesized by intercalating tetraoctylammonium bromide (TOAB) ions into graphite through electrochemical interactions under different reduction potentials. Different degrees of expansion between graphite layers as well as their corresponding structures and topographies have been characterized by different analytical techniques. The nanoscale friction and wear properties of these GICs have been investigated by AFM-based nanofrictional and scratch tests. The results show that electrochemical intercalation using tetraalkylammonium salts with different interaction potentials can tune the friction and wear properties of graphite. Under relatively large applied loads of AFM tips, friction increase and wear can be easier to occur with the increase of the intercalation potential. It is inferred that the increases of both the interlayer space of graphite and the number of ions on the surface give rise to puckered effect and formation of rougher surfaces. This work gives us deep insight into the friction and wear properties of GICs as composite lubrication materials, which would be of great help for material design and preparation. |
---|