Cargando…
Modelling stillbirth mortality reduction with the Lives Saved Tool
BACKGROUND: The worldwide burden of stillbirths is large, with an estimated 2.6 million babies stillborn in 2015 including 1.3 million dying during labour. The Every Newborn Action Plan set a stillbirth target of ≤12 per 1000 in all countries by 2030. Planning tools will be essential as countries se...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688483/ https://www.ncbi.nlm.nih.gov/pubmed/29143647 http://dx.doi.org/10.1186/s12889-017-4742-5 |
_version_ | 1783279175624294400 |
---|---|
author | Blencowe, Hannah Chou, Victoria B. Lawn, Joy E. Bhutta, Zulfiqar A. |
author_facet | Blencowe, Hannah Chou, Victoria B. Lawn, Joy E. Bhutta, Zulfiqar A. |
author_sort | Blencowe, Hannah |
collection | PubMed |
description | BACKGROUND: The worldwide burden of stillbirths is large, with an estimated 2.6 million babies stillborn in 2015 including 1.3 million dying during labour. The Every Newborn Action Plan set a stillbirth target of ≤12 per 1000 in all countries by 2030. Planning tools will be essential as countries set policy and plan investment to scale up interventions to meet this target. This paper summarises the approach taken for modelling the impact of scaling-up health interventions on stillbirths in the Lives Saved tool (LiST), and potential future refinements. METHODS: The specific application to stillbirths of the general method for modelling the impact of interventions in LiST is described. The evidence for the effectiveness of potential interventions to reduce stillbirths are reviewed and the assumptions of the affected fraction of stillbirths who could potentially benefit from these interventions are presented. The current assumptions and their effects on stillbirth reduction are described and potential future improvements discussed. RESULTS: High quality evidence are not available for all parameters in the LiST stillbirth model. Cause-specific mortality data is not available for stillbirths, therefore stillbirths are modelled in LiST using an attributable fraction approach by timing of stillbirths (antepartum/ intrapartum). Of 35 potential interventions to reduce stillbirths identified, eight interventions are currently modelled in LiST. These include childbirth care, induction for prolonged pregnancy, multiple micronutrient and balanced energy supplementation, malaria prevention and detection and management of hypertensive disorders of pregnancy, diabetes and syphilis. For three of the interventions, childbirth care, detection and management of hypertensive disorders of pregnancy, and diabetes the estimate of effectiveness is based on expert opinion through a Delphi process. Only for malaria is coverage information available, with coverage estimated using expert opinion for all other interventions. Going forward, potential improvements identified include improving of effectiveness and coverage estimates for included interventions and addition of further interventions. CONCLUSIONS: Known effective interventions have the potential to reduce stillbirths and can be modelled using the LiST tool. Data for stillbirths are improving. Going forward the LiST tool should seek, where possible, to incorporate these improving data, and to continually be refined to provide an increasingly reliable tool for policy and programming purposes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12889-017-4742-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5688483 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-56884832017-11-22 Modelling stillbirth mortality reduction with the Lives Saved Tool Blencowe, Hannah Chou, Victoria B. Lawn, Joy E. Bhutta, Zulfiqar A. BMC Public Health Research BACKGROUND: The worldwide burden of stillbirths is large, with an estimated 2.6 million babies stillborn in 2015 including 1.3 million dying during labour. The Every Newborn Action Plan set a stillbirth target of ≤12 per 1000 in all countries by 2030. Planning tools will be essential as countries set policy and plan investment to scale up interventions to meet this target. This paper summarises the approach taken for modelling the impact of scaling-up health interventions on stillbirths in the Lives Saved tool (LiST), and potential future refinements. METHODS: The specific application to stillbirths of the general method for modelling the impact of interventions in LiST is described. The evidence for the effectiveness of potential interventions to reduce stillbirths are reviewed and the assumptions of the affected fraction of stillbirths who could potentially benefit from these interventions are presented. The current assumptions and their effects on stillbirth reduction are described and potential future improvements discussed. RESULTS: High quality evidence are not available for all parameters in the LiST stillbirth model. Cause-specific mortality data is not available for stillbirths, therefore stillbirths are modelled in LiST using an attributable fraction approach by timing of stillbirths (antepartum/ intrapartum). Of 35 potential interventions to reduce stillbirths identified, eight interventions are currently modelled in LiST. These include childbirth care, induction for prolonged pregnancy, multiple micronutrient and balanced energy supplementation, malaria prevention and detection and management of hypertensive disorders of pregnancy, diabetes and syphilis. For three of the interventions, childbirth care, detection and management of hypertensive disorders of pregnancy, and diabetes the estimate of effectiveness is based on expert opinion through a Delphi process. Only for malaria is coverage information available, with coverage estimated using expert opinion for all other interventions. Going forward, potential improvements identified include improving of effectiveness and coverage estimates for included interventions and addition of further interventions. CONCLUSIONS: Known effective interventions have the potential to reduce stillbirths and can be modelled using the LiST tool. Data for stillbirths are improving. Going forward the LiST tool should seek, where possible, to incorporate these improving data, and to continually be refined to provide an increasingly reliable tool for policy and programming purposes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12889-017-4742-5) contains supplementary material, which is available to authorized users. BioMed Central 2017-11-07 /pmc/articles/PMC5688483/ /pubmed/29143647 http://dx.doi.org/10.1186/s12889-017-4742-5 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Blencowe, Hannah Chou, Victoria B. Lawn, Joy E. Bhutta, Zulfiqar A. Modelling stillbirth mortality reduction with the Lives Saved Tool |
title | Modelling stillbirth mortality reduction with the Lives Saved Tool |
title_full | Modelling stillbirth mortality reduction with the Lives Saved Tool |
title_fullStr | Modelling stillbirth mortality reduction with the Lives Saved Tool |
title_full_unstemmed | Modelling stillbirth mortality reduction with the Lives Saved Tool |
title_short | Modelling stillbirth mortality reduction with the Lives Saved Tool |
title_sort | modelling stillbirth mortality reduction with the lives saved tool |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688483/ https://www.ncbi.nlm.nih.gov/pubmed/29143647 http://dx.doi.org/10.1186/s12889-017-4742-5 |
work_keys_str_mv | AT blencowehannah modellingstillbirthmortalityreductionwiththelivessavedtool AT chouvictoriab modellingstillbirthmortalityreductionwiththelivessavedtool AT lawnjoye modellingstillbirthmortalityreductionwiththelivessavedtool AT bhuttazulfiqara modellingstillbirthmortalityreductionwiththelivessavedtool |