Cargando…

Active fraction (HS7) from Taiwanofungus camphoratus inhibits AKT-mTOR, ERK and STAT3 pathways and induces CDK inhibitors in CL1-0 human lung cancer cells

BACKGROUND: The non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. In NSCLC, the oncogenic AKT-mTOR, ERK and STAT3 pathways are commonly dysregulated and have emerged as attractive targets for therapeutic developments. In a relatively limited subset of NSCLC, these pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Lai, I-Chun, Lai, Gi-Ming, Chow, Jyh-Ming, Lee, Hsin-Lun, Yeh, Chuan-Feng, Li, Chi-Han, Yan, Jiann-Long, Chuang, Shuang-En, Whang-Peng, Jacqueline, Bai, Kuan-Jen, Yao, Chih-Jung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688709/
https://www.ncbi.nlm.nih.gov/pubmed/29177004
http://dx.doi.org/10.1186/s13020-017-0154-9
Descripción
Sumario:BACKGROUND: The non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. In NSCLC, the oncogenic AKT-mTOR, ERK and STAT3 pathways are commonly dysregulated and have emerged as attractive targets for therapeutic developments. In a relatively limited subset of NSCLC, these pathways driven by mutant EGFR can be treated by the tyrosine kinase inhibitors (TKIs)-mediated targeted therapy. However, for the most NSCLC, more novel targeted agents are imperatively needed. Therefore, we investigated the inhibitory effects of the active fraction HS7 from Taiwanofungus camphoratus, a unique medicinal fungus in Taiwan, on these pathways in CL1-0 EGFR wild-type human NSCLC cells. METHODS: The active fraction HS7 was prepared by n-hexane extraction of T. camphoratus followed by silica gel chromatography. Its effects on the cell viabilities were determined by sulforhodamine B colorimetric assay. Flow cytometry was used to analyze cell-cycle regulation and apoptosis induction. The changes in cellular protein levels were examined by Western blot. RESULTS: The active fraction HS7 vigorously inhibits AKT-mTOR, ERK and STAT3 signaling pathways in CL1-0 cells. At dose of 25 μg/mL, these signaling pathways were almost completely inhibited by HS7, accompanied with induction of cyclin-dependent kinase inhibitors such as p15, p21 and p27. Accordingly, the AKT-mTOR downstream targets p-p70S6K and HIF-1α were also suppressed as well. At this dose, the cell proliferation was profoundly suppressed to 23.4% of control and apoptosis induction was observed. CONCLUSIONS: The active fraction HS7 from n-hexane extract of T. camphoratus exerts multi-targeting activity on the suppression of AKT-mTOR, ERK and STAT3 pathways and induction of p15, p21 and p27 in EGFR wild-type NSCLC cells. This multi-targeting activity of HS7 suggests its potential as an alternative medicine for the treatment of EGFR TKIs resistant NSCLC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13020-017-0154-9) contains supplementary material, which is available to authorized users.