Cargando…
Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures
Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoa...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688764/ https://www.ncbi.nlm.nih.gov/pubmed/29296680 http://dx.doi.org/10.1126/sciadv.aao1472 |
_version_ | 1783279235055484928 |
---|---|
author | Naffouti, Meher Backofen, Rainer Salvalaglio, Marco Bottein, Thomas Lodari, Mario Voigt, Axel David, Thomas Benkouider, Abdelmalek Fraj, Ibtissem Favre, Luc Ronda, Antoine Berbezier, Isabelle Grosso, David Abbarchi, Marco Bollani, Monica |
author_facet | Naffouti, Meher Backofen, Rainer Salvalaglio, Marco Bottein, Thomas Lodari, Mario Voigt, Axel David, Thomas Benkouider, Abdelmalek Fraj, Ibtissem Favre, Luc Ronda, Antoine Berbezier, Isabelle Grosso, David Abbarchi, Marco Bollani, Monica |
author_sort | Naffouti, Meher |
collection | PubMed |
description | Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoarchitectures of monocrystalline silicon on insulator with unprecedented precision and reproducibility over large scales. Phase-field simulations reveal the dominant role of surface diffusion as a driving force for dewetting and provide a predictive tool to further engineer this hybrid top-down/bottom-up self-assembly method. Our results demonstrate that patches of thin monocrystalline films of metals and semiconductors share the same dewetting dynamics. We also prove the potential of our method by fabricating nanotransfer molding of metal oxide xerogels on silicon and glass substrates. This method allows the novel possibility of transferring these Si-based patterns on different materials, which do not usually undergo dewetting, offering great potential also for microfluidic or sensing applications. |
format | Online Article Text |
id | pubmed-5688764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56887642018-01-02 Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures Naffouti, Meher Backofen, Rainer Salvalaglio, Marco Bottein, Thomas Lodari, Mario Voigt, Axel David, Thomas Benkouider, Abdelmalek Fraj, Ibtissem Favre, Luc Ronda, Antoine Berbezier, Isabelle Grosso, David Abbarchi, Marco Bollani, Monica Sci Adv Research Articles Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoarchitectures of monocrystalline silicon on insulator with unprecedented precision and reproducibility over large scales. Phase-field simulations reveal the dominant role of surface diffusion as a driving force for dewetting and provide a predictive tool to further engineer this hybrid top-down/bottom-up self-assembly method. Our results demonstrate that patches of thin monocrystalline films of metals and semiconductors share the same dewetting dynamics. We also prove the potential of our method by fabricating nanotransfer molding of metal oxide xerogels on silicon and glass substrates. This method allows the novel possibility of transferring these Si-based patterns on different materials, which do not usually undergo dewetting, offering great potential also for microfluidic or sensing applications. American Association for the Advancement of Science 2017-11-10 /pmc/articles/PMC5688764/ /pubmed/29296680 http://dx.doi.org/10.1126/sciadv.aao1472 Text en Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Naffouti, Meher Backofen, Rainer Salvalaglio, Marco Bottein, Thomas Lodari, Mario Voigt, Axel David, Thomas Benkouider, Abdelmalek Fraj, Ibtissem Favre, Luc Ronda, Antoine Berbezier, Isabelle Grosso, David Abbarchi, Marco Bollani, Monica Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures |
title | Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures |
title_full | Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures |
title_fullStr | Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures |
title_full_unstemmed | Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures |
title_short | Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures |
title_sort | complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688764/ https://www.ncbi.nlm.nih.gov/pubmed/29296680 http://dx.doi.org/10.1126/sciadv.aao1472 |
work_keys_str_mv | AT naffoutimeher complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT backofenrainer complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT salvalagliomarco complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT botteinthomas complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT lodarimario complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT voigtaxel complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT davidthomas complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT benkouiderabdelmalek complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT frajibtissem complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT favreluc complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT rondaantoine complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT berbezierisabelle complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT grossodavid complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT abbarchimarco complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures AT bollanimonica complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures |