Cargando…

Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures

Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoa...

Descripción completa

Detalles Bibliográficos
Autores principales: Naffouti, Meher, Backofen, Rainer, Salvalaglio, Marco, Bottein, Thomas, Lodari, Mario, Voigt, Axel, David, Thomas, Benkouider, Abdelmalek, Fraj, Ibtissem, Favre, Luc, Ronda, Antoine, Berbezier, Isabelle, Grosso, David, Abbarchi, Marco, Bollani, Monica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688764/
https://www.ncbi.nlm.nih.gov/pubmed/29296680
http://dx.doi.org/10.1126/sciadv.aao1472
_version_ 1783279235055484928
author Naffouti, Meher
Backofen, Rainer
Salvalaglio, Marco
Bottein, Thomas
Lodari, Mario
Voigt, Axel
David, Thomas
Benkouider, Abdelmalek
Fraj, Ibtissem
Favre, Luc
Ronda, Antoine
Berbezier, Isabelle
Grosso, David
Abbarchi, Marco
Bollani, Monica
author_facet Naffouti, Meher
Backofen, Rainer
Salvalaglio, Marco
Bottein, Thomas
Lodari, Mario
Voigt, Axel
David, Thomas
Benkouider, Abdelmalek
Fraj, Ibtissem
Favre, Luc
Ronda, Antoine
Berbezier, Isabelle
Grosso, David
Abbarchi, Marco
Bollani, Monica
author_sort Naffouti, Meher
collection PubMed
description Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoarchitectures of monocrystalline silicon on insulator with unprecedented precision and reproducibility over large scales. Phase-field simulations reveal the dominant role of surface diffusion as a driving force for dewetting and provide a predictive tool to further engineer this hybrid top-down/bottom-up self-assembly method. Our results demonstrate that patches of thin monocrystalline films of metals and semiconductors share the same dewetting dynamics. We also prove the potential of our method by fabricating nanotransfer molding of metal oxide xerogels on silicon and glass substrates. This method allows the novel possibility of transferring these Si-based patterns on different materials, which do not usually undergo dewetting, offering great potential also for microfluidic or sensing applications.
format Online
Article
Text
id pubmed-5688764
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-56887642018-01-02 Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures Naffouti, Meher Backofen, Rainer Salvalaglio, Marco Bottein, Thomas Lodari, Mario Voigt, Axel David, Thomas Benkouider, Abdelmalek Fraj, Ibtissem Favre, Luc Ronda, Antoine Berbezier, Isabelle Grosso, David Abbarchi, Marco Bollani, Monica Sci Adv Research Articles Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoarchitectures of monocrystalline silicon on insulator with unprecedented precision and reproducibility over large scales. Phase-field simulations reveal the dominant role of surface diffusion as a driving force for dewetting and provide a predictive tool to further engineer this hybrid top-down/bottom-up self-assembly method. Our results demonstrate that patches of thin monocrystalline films of metals and semiconductors share the same dewetting dynamics. We also prove the potential of our method by fabricating nanotransfer molding of metal oxide xerogels on silicon and glass substrates. This method allows the novel possibility of transferring these Si-based patterns on different materials, which do not usually undergo dewetting, offering great potential also for microfluidic or sensing applications. American Association for the Advancement of Science 2017-11-10 /pmc/articles/PMC5688764/ /pubmed/29296680 http://dx.doi.org/10.1126/sciadv.aao1472 Text en Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Naffouti, Meher
Backofen, Rainer
Salvalaglio, Marco
Bottein, Thomas
Lodari, Mario
Voigt, Axel
David, Thomas
Benkouider, Abdelmalek
Fraj, Ibtissem
Favre, Luc
Ronda, Antoine
Berbezier, Isabelle
Grosso, David
Abbarchi, Marco
Bollani, Monica
Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures
title Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures
title_full Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures
title_fullStr Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures
title_full_unstemmed Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures
title_short Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures
title_sort complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688764/
https://www.ncbi.nlm.nih.gov/pubmed/29296680
http://dx.doi.org/10.1126/sciadv.aao1472
work_keys_str_mv AT naffoutimeher complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT backofenrainer complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT salvalagliomarco complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT botteinthomas complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT lodarimario complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT voigtaxel complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT davidthomas complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT benkouiderabdelmalek complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT frajibtissem complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT favreluc complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT rondaantoine complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT berbezierisabelle complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT grossodavid complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT abbarchimarco complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures
AT bollanimonica complexdewettingscenariosofultrathinsiliconfilmsforlargescalenanoarchitectures