Cargando…
Sequence determinants of the folding properties of box C/D kink-turns in RNA
Folding properties differ markedly between kink-turns (k-turns) that have different biological functions. While ribosomal and riboswitch k-turns generally fold into their kinked conformation on addition of metal ions, box C/D snoRNP k-turns remain completely unfolded under these conditions, although...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689011/ https://www.ncbi.nlm.nih.gov/pubmed/28956757 http://dx.doi.org/10.1261/rna.063453.117 |
Sumario: | Folding properties differ markedly between kink-turns (k-turns) that have different biological functions. While ribosomal and riboswitch k-turns generally fold into their kinked conformation on addition of metal ions, box C/D snoRNP k-turns remain completely unfolded under these conditions, although they fold on addition of L7Ae protein. Sequence elements have been systematically exchanged between a standard ribosomal k-turn (Kt-7) that folds on addition of metal ions, and a box C/D k-turn. Folding was studied using fluorescence resonance energy transfer and gel electrophoresis. Three sequence elements each contribute in an approximately additive manner to the different folding properties of Kt-7 and box C/D k-turns from archaea. Bioinformatic analysis indicates that k-turn sequences evolve sequences that suit their folding properties to their biological function. The majority of ribosomal and riboswitch k-turns have sequences allowing unassisted folding in response to the presence of metal ions. In contrast, box C/D k-turns have sequences that require the binding of proteins to drive folding into the kinked conformation, consistent with their role in the assembly of the box C/D snoRNP apparatus. The rules governing the influence of sequence on folding properties can be applied to other standard k-turns to predict their folding characteristics. |
---|