Cargando…
Soluble Collagen VI treatment enhances mesenchymal stem cells expansion for engineering cartilage
Bone Marrow‐derived mesenchymal stem cells (BM‐MSC) are an attractive source for cell‐based therapies in cartilage injury owing to their efficient differentiation into chondrocytes and their immune‐suppressive abilities. However, their clinical use is hampered by a scarcity of cells leading to compr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689496/ https://www.ncbi.nlm.nih.gov/pubmed/29313037 http://dx.doi.org/10.1002/btm2.10078 |
Sumario: | Bone Marrow‐derived mesenchymal stem cells (BM‐MSC) are an attractive source for cell‐based therapies in cartilage injury owing to their efficient differentiation into chondrocytes and their immune‐suppressive abilities. However, their clinical use is hampered by a scarcity of cells leading to compromised efficacy. While expansion of human MSC ex vivo can potentially overcome the scarcity of cells, current methods lead to a rapid loss of the stem cell properties. In this study, we report soluble Collagen VI (cartilage pericellular matrix component) as a potential biologic that can expand the MSC population while maintaining the stem cell phenotype as confirmed by expression of the stem cell markers CD105 and CD90. Short‐term treatment with Collagen VI additionally retains the potential of MSC to differentiate into mature chondrocytes in pellet culture. Cartilage pellets generated from MSC treated with Collagen VI or control express comparable amounts of the chondrogenic markers Collagen II, Aggrecan and Sox9, and the extracellular glycosaminoglycans. Our observations confirm that the use of the endogenous and cartilage‐specific factor Collagen VI is valuable for a rapid and efficient expansion of MSC for potential use in cartilage regeneration and osteoarthritis. |
---|