Cargando…

Frequency of expression and generation of T-cell responses against antigens on multiple myeloma cells in patients included in the GMMG-MM5 trial

BACKGROUND: Raising T-cell response against antigens either expressed on normal and malignant plasma cells (e.g. HM1.24) or aberrantly on myeloma cells only (e.g. cancer testis antigens, CTA) by vaccination is a potential treatment approach for multiple myeloma. RESULTS: Expression by GEP is found f...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmitt, Michael, Hückelhoven, Angela G., Hundemer, Michael, Schmitt, Anita, Lipp, Susanne, Emde, Martina, Salwender, Hans, Hänel, Mathias, Weisel, Katja, Bertsch, Uta, Dürig, Jan, Ho, Anthony D., Blau, Igor Wolfgang, Goldschmidt, Hartmut, Seckinger, Anja, Hose, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689578/
https://www.ncbi.nlm.nih.gov/pubmed/29156688
http://dx.doi.org/10.18632/oncotarget.11215
Descripción
Sumario:BACKGROUND: Raising T-cell response against antigens either expressed on normal and malignant plasma cells (e.g. HM1.24) or aberrantly on myeloma cells only (e.g. cancer testis antigens, CTA) by vaccination is a potential treatment approach for multiple myeloma. RESULTS: Expression by GEP is found for HM1.24 in all, HMMR in 318/458 (69.4%), MAGE-A3 in 209/458 (45.6%), NY-ESO-1/2 in 40/458 (8.7%), and WT-1 in 4/458 (0.8%) of samples with the pattern being confirmed by RNA-sequencing. T-cell-activation is found in 9/26 (34.6%) of patient samples, i.e. against HM1.24 (4/24), RHAMM-R3 (3/26), RHAMM1-8 (2/14), WT-1 (1/11), NY-ESO-1/2 (1/9), and MAGE-A3 (2/8). In 7/19 T-cell activation responses, myeloma cells lack respective antigen-expression. Expression of MAGE-A3, HMMR and NY-ESO-1/2 is associated with adverse survival. EXPERIMENTAL DESIGN: We assessed expression of HM1.24 and the CTAs MAGE-A3, NY-ESO-1/2, WT-1 and HMMR in CD138-purified myeloma cell samples of previously untreated myeloma patients in the GMMG-MM5 multicenter-trial by gene expression profiling (GEP; n = 458) and RNA-sequencing (n = 152) as potential population regarding vaccination trials. We then validated the feasibility to generate T-cell responses (n = 72) against these antigens by IFN-γ EliSpot-assay (n = 26) related to antigen expression (n = 22). Lastly, we assessed survival impact of antigen expression in an independent cohort of 247 patients treated by high-dose therapy and autologous stem cell transplantation. CONCLUSIONS: As T-cell responses can only be raised in a subfraction of patients despite antigen expression, and the number of responses increases with more antigens used, vaccination strategies should assess patients’ antigen expression and use a “cocktail” of peptide vaccines.