Cargando…

Association of breast carcinoma growth with a non-canonical axis of IFNγ/IDO1/TSP1

Reciprocal interactions between cancers and the surrounding microenvironment have an important role in tumour evolution. In this study, our data suggested that through thrombospondin 1 (TSP1), tumour-associated microvessel provides a dormant niche to sustain inactive status of breast invasive ductal...

Descripción completa

Detalles Bibliográficos
Autores principales: Lopes-Bastos, Bruno, Jin, Liang, Ruge, Fiona, Owen, Sioned, Sanders, Andrew, Cogle, Christopher, Chester, John, Jiang, Wen G., Cai, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689591/
https://www.ncbi.nlm.nih.gov/pubmed/29156701
http://dx.doi.org/10.18632/oncotarget.18781
Descripción
Sumario:Reciprocal interactions between cancers and the surrounding microenvironment have an important role in tumour evolution. In this study, our data suggested that through thrombospondin 1 (TSP1), tumour-associated microvessel provides a dormant niche to sustain inactive status of breast invasive ductal carcinoma (IDC) cells. TSP1 levels in the tumour stroma were negatively correlated with vascular indoleamine 2,3-dioxygenase 1 (IDO1) in IDC tissues. IDO1 is an intracellular enzyme initiating the first and rate-limited step of tryptophan breakdown. Lower stromal TSP1 levels and positive tumour vascular IDO1 staining seems to associate with poor survive of patients with IDC. IDC cells induced a significantly increase in IDO1 expression in endothelial cells (ECs). IFNγ exerts a similar effect on ECs. We hypothesized a tryptophan starvation theory that since tryptophan is essential for the synthesis of TSP1, IDO1 induce a decrease in tryptophan availability and a reduction in TSP1 synthesis in ECs, leading to overcoming the dormancy state of IDC cells and exacerbating conditions such as tumour invasion and metastasis. These findings identify a non-canonical role of IFNγ/IDO1/TSP1 axis in microvascular niche-dominated dormancy of breast invasive ductal carcinoma with a solid foundation for further investigation of therapeutic and prognostic relevance.