Cargando…
PRMDA: personalized recommendation-based MiRNA-disease association prediction
Recently, researchers have been increasingly focusing on microRNAs (miRNAs) with accumulating evidence indicating that miRNAs serve as a vital role in various biological processes and dysfunctions of miRNAs are closely related with human complex diseases. Predicting potential associations between mi...
Autores principales: | You, Zhu-Hong, Wang, Luo-Pin, Chen, Xing, Zhang, Shanwen, Li, Xiao-Fang, Yan, Gui-Ying, Li, Zheng-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689632/ https://www.ncbi.nlm.nih.gov/pubmed/29156742 http://dx.doi.org/10.18632/oncotarget.20996 |
Ejemplares similares
-
MCMDA: Matrix completion for MiRNA-disease association prediction
por: Li, Jian-Qiang, et al.
Publicado: (2017) -
HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction
por: Chen, Xing, et al.
Publicado: (2016) -
PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction
por: You, Zhu-Hong, et al.
Publicado: (2017) -
DRMDA: deep representations‐based miRNA–disease association prediction
por: Chen, Xing, et al.
Publicado: (2017) -
Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model
por: Huang, Yu-An, et al.
Publicado: (2017)