Cargando…
Identification of potential tissue-specific cancer biomarkers and development of cancer versus normal genomic classifiers
Machine learning techniques for cancer prediction and biomarker discovery can hasten cancer detection and significantly improve prognosis. Recent “OMICS” studies which include a variety of cancer and normal tissue samples along with machine learning approaches have the potential to further accelerat...
Autores principales: | Mohammed, Akram, Biegert, Greyson, Adamec, Jiri, Helikar, Tomáš |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689641/ https://www.ncbi.nlm.nih.gov/pubmed/29156751 http://dx.doi.org/10.18632/oncotarget.21127 |
Ejemplares similares
-
CancerDiscover: an integrative pipeline for cancer biomarker and cancer class prediction from high-throughput sequencing data
por: Mohammed, Akram, et al.
Publicado: (2017) -
HydrAd: A Helper-Dependent Adenovirus Targeting Multiple Immune Pathways for Cancer Immunotherapy
por: Rosewell Shaw, Amanda, et al.
Publicado: (2022) -
Identification of condition-specific regulatory mechanisms in normal and cancerous human lung tissue
por: Hang, Yuqing, et al.
Publicado: (2022) -
Identification of diagnostic upper gastrointestinal cancer tissue type-specific urinary biomarkers
por: Husi, Holger, et al.
Publicado: (2019) -
Identification of a 13-gene-based classifier as a potential biomarker to predict the effects of fluorouracil-based chemotherapy in colorectal cancer
por: Gan, Zuhuan, et al.
Publicado: (2019)