Cargando…
Adipose-derived stem cells-seeded bladder acellular matrix graft-silk fibroin enhances bladder reconstruction in a rat model
The unfavourable clinical outcomes of host cell-seeded scaffolds for bladder augmentation warrant improved bioactive biomaterials. This study aimed to examine the feasibility of adipose-derived stem cells (ASCs)-seeded bilayer bladder acellular matrix graft (BAMG)-silk fibroin (SF) scaffold in enhan...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689699/ https://www.ncbi.nlm.nih.gov/pubmed/29156809 http://dx.doi.org/10.18632/oncotarget.21211 |
Sumario: | The unfavourable clinical outcomes of host cell-seeded scaffolds for bladder augmentation warrant improved bioactive biomaterials. This study aimed to examine the feasibility of adipose-derived stem cells (ASCs)-seeded bilayer bladder acellular matrix graft (BAMG)-silk fibroin (SF) scaffold in enhancing bladder reconstruction. Sprague Dawley rats were randomly divided into three groups: the BAMG-SF-ASCs group, the acellular BAMG-SF group and the cystotomy group. The BAMG-SF-ASCs group was sampled at 2, 4 and 12 weeks, and compared with the other groups at 12 weeks. In the BAMG-SF-ASCs group, the normal bladder contour was reformed similar to that in the cystotomy group, with abundant urothelium and smooth muscle regeneration, as well as a suitable scaffold degradation speed, and trivial fibrosis and inflammation. The ASCs seeded in BAMG-SF were maintained in the regenerated region during the 12-week experimental period and significantly enhanced the vessel density, nerve regeneration and bladder function compared with acellular BAMG-SF. In addition, the BAMG-SF-ASCs group presented elevated levels of SDF-1α, VEGF and their receptors, with an obvious increase in ERK 1/2 phosphorylation. BAMG-SF is a promising biomaterial for ASCs seeding to facilitate bladder augmentation and demonstrated an enhanced angiogenic potential possibly related to the SDF-1α/CXCR4 pathway via ERK 1/2 activation. |
---|