Cargando…
Contrast enhancement for portal images by combination of subtraction and reprojection processes for Compton scattering
For patient setup of the IGRT technique, various imaging systems are currently available. MV portal imaging is performed in identical geometry with the treatment beam so that the portal image provides accurate geometric information. However, MV imaging suffers from poor image contrast due to larger...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689919/ https://www.ncbi.nlm.nih.gov/pubmed/28895278 http://dx.doi.org/10.1002/acm2.12181 |
Sumario: | For patient setup of the IGRT technique, various imaging systems are currently available. MV portal imaging is performed in identical geometry with the treatment beam so that the portal image provides accurate geometric information. However, MV imaging suffers from poor image contrast due to larger Compton scatter photons. In this work, an original image processing algorithm is proposed to improve and enhance the image contrast without increasing the imaging dose. Scatter estimation was performed in detail by MC simulation based on patient CT data. In the image processing, scatter photons were eliminated and then they were reprojected as primary photons on the assumption that Compton interaction did not take place. To improve the processing efficiency, the dose spread function within the EPID was investigated and implemented on the developed code. Portal images with and without the proposed image processing were evaluated by the image contrast profile. By the subtraction process, the image contrast was improved but the EPID signal was weakened because 15.2% of the signal was eliminated due to the contribution of scatter photons. Hence, these scatter photons were reprojected in the reprojection process. As a result, the tumor, bronchi, mediastinal space and ribs were observed more clearly than in the original image. It was clarified that image processing with the dose spread functions provides stronger contrast enhancement while maintaining a sufficient signal‐to‐noise ratio. This work shows the feasibility of improving and enhancing the contrast of portal images. |
---|