Cargando…
A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system
AcurosPT is a Monte Carlo algorithm in the Eclipse 13.7 treatment planning system, which is designed to provide rapid and accurate dose calculations for proton therapy. Computational run‐time in minimized by simplifying or eliminating less significant physics processes. In this article, the accuracy...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689961/ https://www.ncbi.nlm.nih.gov/pubmed/28300385 http://dx.doi.org/10.1002/acm2.12043 |
_version_ | 1783279497311682560 |
---|---|
author | Lin, Liyong Huang, Sheng Kang, Minglei Hiltunen, Petri Vanderstraeten, Reynald Lindberg, Jari Siljamaki, Sami Wareing, Todd Davis, Ian Barnett, Allen McGhee, John Simone, Charles B. Solberg, Timothy D. McDonough, James E. Ainsley, Christopher |
author_facet | Lin, Liyong Huang, Sheng Kang, Minglei Hiltunen, Petri Vanderstraeten, Reynald Lindberg, Jari Siljamaki, Sami Wareing, Todd Davis, Ian Barnett, Allen McGhee, John Simone, Charles B. Solberg, Timothy D. McDonough, James E. Ainsley, Christopher |
author_sort | Lin, Liyong |
collection | PubMed |
description | AcurosPT is a Monte Carlo algorithm in the Eclipse 13.7 treatment planning system, which is designed to provide rapid and accurate dose calculations for proton therapy. Computational run‐time in minimized by simplifying or eliminating less significant physics processes. In this article, the accuracy of AcurosPT was benchmarked against both measurement and an independent MC calculation, TOPAS. Such a method can be applied to any new MC calculation for the detection of potential inaccuracies. To validate multiple Coulomb scattering (MCS) which affects primary beam broadening, single spot profiles in a Solidwater(®) phantom were compared for beams of five selected proton energies between AcurosPT, measurement and TOPAS. The spot Gaussian sigma in AcurosPT was found to increase faster with depth than both measurement and TOPAS, suggesting that the MCS algorithm in AcurosPT overestimates the scattering effect. To validate AcurosPT modeling of the halo component beyond primary beam broadening, field size factors (FSF) were compared for multi‐spot profiles measured in a water phantom. The FSF for small field sizes were found to disagree with measurement, with the disagreement increasing with depth. Conversely, TOPAS simulations of the same FSF consistently agreed with measurement to within 1.5%. The disagreement in absolute dose between AcurosPT and measurement was smaller than 2% at the mid‐range depth of multi‐energy beams. While AcurosPT calculates acceptable dose distributions for typical clinical beams, users are cautioned of potentially larger errors at distal depths due to overestimated MCS and halo implementation. |
format | Online Article Text |
id | pubmed-5689961 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-56899612018-04-02 A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system Lin, Liyong Huang, Sheng Kang, Minglei Hiltunen, Petri Vanderstraeten, Reynald Lindberg, Jari Siljamaki, Sami Wareing, Todd Davis, Ian Barnett, Allen McGhee, John Simone, Charles B. Solberg, Timothy D. McDonough, James E. Ainsley, Christopher J Appl Clin Med Phys Radiation Oncology Physics AcurosPT is a Monte Carlo algorithm in the Eclipse 13.7 treatment planning system, which is designed to provide rapid and accurate dose calculations for proton therapy. Computational run‐time in minimized by simplifying or eliminating less significant physics processes. In this article, the accuracy of AcurosPT was benchmarked against both measurement and an independent MC calculation, TOPAS. Such a method can be applied to any new MC calculation for the detection of potential inaccuracies. To validate multiple Coulomb scattering (MCS) which affects primary beam broadening, single spot profiles in a Solidwater(®) phantom were compared for beams of five selected proton energies between AcurosPT, measurement and TOPAS. The spot Gaussian sigma in AcurosPT was found to increase faster with depth than both measurement and TOPAS, suggesting that the MCS algorithm in AcurosPT overestimates the scattering effect. To validate AcurosPT modeling of the halo component beyond primary beam broadening, field size factors (FSF) were compared for multi‐spot profiles measured in a water phantom. The FSF for small field sizes were found to disagree with measurement, with the disagreement increasing with depth. Conversely, TOPAS simulations of the same FSF consistently agreed with measurement to within 1.5%. The disagreement in absolute dose between AcurosPT and measurement was smaller than 2% at the mid‐range depth of multi‐energy beams. While AcurosPT calculates acceptable dose distributions for typical clinical beams, users are cautioned of potentially larger errors at distal depths due to overestimated MCS and halo implementation. John Wiley and Sons Inc. 2017-02-02 /pmc/articles/PMC5689961/ /pubmed/28300385 http://dx.doi.org/10.1002/acm2.12043 Text en © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Radiation Oncology Physics Lin, Liyong Huang, Sheng Kang, Minglei Hiltunen, Petri Vanderstraeten, Reynald Lindberg, Jari Siljamaki, Sami Wareing, Todd Davis, Ian Barnett, Allen McGhee, John Simone, Charles B. Solberg, Timothy D. McDonough, James E. Ainsley, Christopher A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system |
title | A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system |
title_full | A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system |
title_fullStr | A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system |
title_full_unstemmed | A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system |
title_short | A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system |
title_sort | benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system |
topic | Radiation Oncology Physics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689961/ https://www.ncbi.nlm.nih.gov/pubmed/28300385 http://dx.doi.org/10.1002/acm2.12043 |
work_keys_str_mv | AT linliyong abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT huangsheng abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT kangminglei abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT hiltunenpetri abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT vanderstraetenreynald abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT lindbergjari abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT siljamakisami abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT wareingtodd abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT davisian abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT barnettallen abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT mcgheejohn abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT simonecharlesb abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT solbergtimothyd abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT mcdonoughjamese abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT ainsleychristopher abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT linliyong benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT huangsheng benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT kangminglei benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT hiltunenpetri benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT vanderstraetenreynald benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT lindbergjari benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT siljamakisami benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT wareingtodd benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT davisian benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT barnettallen benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT mcgheejohn benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT simonecharlesb benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT solbergtimothyd benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT mcdonoughjamese benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem AT ainsleychristopher benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem |