Cargando…

A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system

AcurosPT is a Monte Carlo algorithm in the Eclipse 13.7 treatment planning system, which is designed to provide rapid and accurate dose calculations for proton therapy. Computational run‐time in minimized by simplifying or eliminating less significant physics processes. In this article, the accuracy...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Liyong, Huang, Sheng, Kang, Minglei, Hiltunen, Petri, Vanderstraeten, Reynald, Lindberg, Jari, Siljamaki, Sami, Wareing, Todd, Davis, Ian, Barnett, Allen, McGhee, John, Simone, Charles B., Solberg, Timothy D., McDonough, James E., Ainsley, Christopher
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689961/
https://www.ncbi.nlm.nih.gov/pubmed/28300385
http://dx.doi.org/10.1002/acm2.12043
_version_ 1783279497311682560
author Lin, Liyong
Huang, Sheng
Kang, Minglei
Hiltunen, Petri
Vanderstraeten, Reynald
Lindberg, Jari
Siljamaki, Sami
Wareing, Todd
Davis, Ian
Barnett, Allen
McGhee, John
Simone, Charles B.
Solberg, Timothy D.
McDonough, James E.
Ainsley, Christopher
author_facet Lin, Liyong
Huang, Sheng
Kang, Minglei
Hiltunen, Petri
Vanderstraeten, Reynald
Lindberg, Jari
Siljamaki, Sami
Wareing, Todd
Davis, Ian
Barnett, Allen
McGhee, John
Simone, Charles B.
Solberg, Timothy D.
McDonough, James E.
Ainsley, Christopher
author_sort Lin, Liyong
collection PubMed
description AcurosPT is a Monte Carlo algorithm in the Eclipse 13.7 treatment planning system, which is designed to provide rapid and accurate dose calculations for proton therapy. Computational run‐time in minimized by simplifying or eliminating less significant physics processes. In this article, the accuracy of AcurosPT was benchmarked against both measurement and an independent MC calculation, TOPAS. Such a method can be applied to any new MC calculation for the detection of potential inaccuracies. To validate multiple Coulomb scattering (MCS) which affects primary beam broadening, single spot profiles in a Solidwater(®) phantom were compared for beams of five selected proton energies between AcurosPT, measurement and TOPAS. The spot Gaussian sigma in AcurosPT was found to increase faster with depth than both measurement and TOPAS, suggesting that the MCS algorithm in AcurosPT overestimates the scattering effect. To validate AcurosPT modeling of the halo component beyond primary beam broadening, field size factors (FSF) were compared for multi‐spot profiles measured in a water phantom. The FSF for small field sizes were found to disagree with measurement, with the disagreement increasing with depth. Conversely, TOPAS simulations of the same FSF consistently agreed with measurement to within 1.5%. The disagreement in absolute dose between AcurosPT and measurement was smaller than 2% at the mid‐range depth of multi‐energy beams. While AcurosPT calculates acceptable dose distributions for typical clinical beams, users are cautioned of potentially larger errors at distal depths due to overestimated MCS and halo implementation.
format Online
Article
Text
id pubmed-5689961
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-56899612018-04-02 A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system Lin, Liyong Huang, Sheng Kang, Minglei Hiltunen, Petri Vanderstraeten, Reynald Lindberg, Jari Siljamaki, Sami Wareing, Todd Davis, Ian Barnett, Allen McGhee, John Simone, Charles B. Solberg, Timothy D. McDonough, James E. Ainsley, Christopher J Appl Clin Med Phys Radiation Oncology Physics AcurosPT is a Monte Carlo algorithm in the Eclipse 13.7 treatment planning system, which is designed to provide rapid and accurate dose calculations for proton therapy. Computational run‐time in minimized by simplifying or eliminating less significant physics processes. In this article, the accuracy of AcurosPT was benchmarked against both measurement and an independent MC calculation, TOPAS. Such a method can be applied to any new MC calculation for the detection of potential inaccuracies. To validate multiple Coulomb scattering (MCS) which affects primary beam broadening, single spot profiles in a Solidwater(®) phantom were compared for beams of five selected proton energies between AcurosPT, measurement and TOPAS. The spot Gaussian sigma in AcurosPT was found to increase faster with depth than both measurement and TOPAS, suggesting that the MCS algorithm in AcurosPT overestimates the scattering effect. To validate AcurosPT modeling of the halo component beyond primary beam broadening, field size factors (FSF) were compared for multi‐spot profiles measured in a water phantom. The FSF for small field sizes were found to disagree with measurement, with the disagreement increasing with depth. Conversely, TOPAS simulations of the same FSF consistently agreed with measurement to within 1.5%. The disagreement in absolute dose between AcurosPT and measurement was smaller than 2% at the mid‐range depth of multi‐energy beams. While AcurosPT calculates acceptable dose distributions for typical clinical beams, users are cautioned of potentially larger errors at distal depths due to overestimated MCS and halo implementation. John Wiley and Sons Inc. 2017-02-02 /pmc/articles/PMC5689961/ /pubmed/28300385 http://dx.doi.org/10.1002/acm2.12043 Text en © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Radiation Oncology Physics
Lin, Liyong
Huang, Sheng
Kang, Minglei
Hiltunen, Petri
Vanderstraeten, Reynald
Lindberg, Jari
Siljamaki, Sami
Wareing, Todd
Davis, Ian
Barnett, Allen
McGhee, John
Simone, Charles B.
Solberg, Timothy D.
McDonough, James E.
Ainsley, Christopher
A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system
title A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system
title_full A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system
title_fullStr A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system
title_full_unstemmed A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system
title_short A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system
title_sort benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system
topic Radiation Oncology Physics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689961/
https://www.ncbi.nlm.nih.gov/pubmed/28300385
http://dx.doi.org/10.1002/acm2.12043
work_keys_str_mv AT linliyong abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT huangsheng abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT kangminglei abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT hiltunenpetri abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT vanderstraetenreynald abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT lindbergjari abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT siljamakisami abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT wareingtodd abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT davisian abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT barnettallen abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT mcgheejohn abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT simonecharlesb abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT solbergtimothyd abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT mcdonoughjamese abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT ainsleychristopher abenchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT linliyong benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT huangsheng benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT kangminglei benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT hiltunenpetri benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT vanderstraetenreynald benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT lindbergjari benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT siljamakisami benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT wareingtodd benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT davisian benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT barnettallen benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT mcgheejohn benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT simonecharlesb benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT solbergtimothyd benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT mcdonoughjamese benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem
AT ainsleychristopher benchmarkingmethodtoevaluatetheaccuracyofacommercialprotonmontecarlopencilbeamscanningtreatmentplanningsystem