Cargando…

A novel greedy heuristic‐based approach to intraoperative planning for permanent prostate brachytherapy

This paper presents a greedy heuristic‐based double iteration and rectification (DIR) approach to intraoperative planning for permanent prostate brachytherapy. The DIR approach adopts a greedy seed selection (GSS) procedure to obtain a preliminary plan. In this process, the potential seeds are evalu...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Bin, Zhou, Fugen, Liu, Bo, Wang, Junjie, Xu, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689981/
https://www.ncbi.nlm.nih.gov/pubmed/25679173
http://dx.doi.org/10.1120/jacmp.v16i1.5144
Descripción
Sumario:This paper presents a greedy heuristic‐based double iteration and rectification (DIR) approach to intraoperative planning for permanent prostate brachytherapy. The DIR approach adopts a greedy seed selection (GSS) procedure to obtain a preliminary plan. In this process, the potential seeds are evaluated according to their ability to irradiate target while spare organs at risk (OARs), and their impact on dosimetric homogeneity within target volume. A flexible termination condition is developed for the GSS procedure, which guarantees sufficient dose within target volume while avoids overdosing the OARs. The preliminary treatment plan generated by the GSS procedure is further refined by the double iteration (DI) and rectification procedure. The DI procedure removes the needles containing only one seed (single seed) and implements the GSS procedure again to get a temporary plan. The DI procedure terminates until the needles number of the temporary plan does not decrease. This process is guided by constantly removing undesired part rather than imposing extra constrains. Following the DI procedure, the rectification procedure attempts to replace the remaining single seeds with the acceptable ones within the existing needles. The change of dosimetric distribution (DD) after the replacement is evaluated to determine whether to accept or to withdraw the replacement. Experimental results demonstrate that the treatment plans obtained by the DIR approach caters to all clinical considerations. Compared with currently available methods, DIR approach is faster, more reliable, and more suitable for intraoperative treatment planning in the operation room. PACS number: 87