Cargando…
An energy minimization method for the correction of cupping artifacts in cone‐beam CT
The purpose of this study was to reduce cupping artifacts and improve quantitative accuracy of the images in cone‐beam CT (CBCT). An energy minimization method (EMM) is proposed to reduce cupping artifacts in reconstructed image of the CBCT. The cupping artifacts are iteratively optimized by using e...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690028/ https://www.ncbi.nlm.nih.gov/pubmed/27455478 http://dx.doi.org/10.1120/jacmp.v17i4.6023 |
Sumario: | The purpose of this study was to reduce cupping artifacts and improve quantitative accuracy of the images in cone‐beam CT (CBCT). An energy minimization method (EMM) is proposed to reduce cupping artifacts in reconstructed image of the CBCT. The cupping artifacts are iteratively optimized by using efficient matrix computations, which are verified to be numerically stable by matrix analysis. Moreover, the energy in our formulation is convex in each of its variables, which brings the robustness of the proposed energy minimization algorithm. The cupping artifacts are estimated as a result of minimizing this energy. The results indicate that proposed algorithm is effective for reducing the cupping artifacts and preserving the quality of the reconstructed image. The proposed method focuses on the reconstructed image without requiring any additional physical equipment; it is easily implemented and provides cupping correction using a single scan acquisition. The experimental results demonstrate that this method can successfully reduce the magnitude of cupping artifacts. The correction algorithm reported here may improve the uniformity of the reconstructed images, thus assisting the development of perfect volume visualization and threshold‐based visualization techniques for reconstructed images. PACS number(s): 87.57.cp |
---|