Cargando…

Experimental validation of a kV source model and dose computation method for CBCT imaging in an anthropomorphic phantom

We present an experimental validation of a kilovoltage (kV) X‐ray source characterization model in an anthropomorphic phantom to estimate patient‐specific absorbed dose from kV cone‐beam computed tomography (CBCT) imaging procedures and compare these doses to nominal weighted CT‐dose index ([Formula...

Descripción completa

Detalles Bibliográficos
Autores principales: Poirier, Yannick, Tambasco, Mauro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690031/
https://www.ncbi.nlm.nih.gov/pubmed/27455477
http://dx.doi.org/10.1120/jacmp.v17i4.6021
Descripción
Sumario:We present an experimental validation of a kilovoltage (kV) X‐ray source characterization model in an anthropomorphic phantom to estimate patient‐specific absorbed dose from kV cone‐beam computed tomography (CBCT) imaging procedures and compare these doses to nominal weighted CT‐dose index ([Formula: see text]) dose estimates. We simulated the default Varian on‐board imager 1.4 (OBI) default CBCT imaging protocols (i.e., standard‐dose head, low‐dose thorax, pelvis, and pelvis spotlight) using our previously developed and easy to implement X‐ray point‐source model and source characterization approach. We used this characterized source model to compute absorbed dose in homogeneous and anthropomorphic phantoms using our previously validated in‐house kV dose computation software (kVDoseCalc). We compared these computed absorbed doses to doses derived from ionization chamber measurements acquired at several points in a homogeneous cylindrical phantom and from thermoluminescent detectors (TLDs) placed in the anthropomorphic phantom. In the homogeneous cylindrical phantom, computed values of absorbed dose relative to the center of the phantom agreed with measured values within [Formula: see text] of local dose, except in regions of high‐dose gradient where the distance to agreement (DTA) was 2 mm. The computed absorbed dose in the anthropomorphic phantom generally agreed with TLD measurements, with an average percent dose difference ranging from [Formula: see text] to [Formula: see text] , depending on the characterized CBCT imaging protocol. The low‐dose thorax and the standard dose scans showed the best and worst agreement, respectively. Our results also broadly agree with published values, which are approximately twice as high as the nominal [Formula: see text] would suggest. The results demonstrate that our previously developed method for modeling and characterizing a kV X‐ray source could be used to accurately assess patient‐specific absorbed dose from kV CBCT procedures within reasonable accuracy, and serve as further evidence that existing [Formula: see text] assessments underestimate absorbed dose delivered to patients. PACS number(s): 87.57.Q‐, 87.57.uq, 87.10.Rt