Cargando…
SPARSE: Seed Point Auto‐Generation for Random Walks Segmentation Enhancement in medical inhomogeneous targets delineation of morphological MR and CT images
In medical image processing, robust segmentation of inhomogeneous targets is a challenging problem. Because of the complexity and diversity in medical images, the commonly used semiautomatic segmentation algorithms usually fail in the segmentation of inhomogeneous objects. In this study, we propose...
Autores principales: | Chen, Haibin, Zhen, Xin, Gu, Xuejun, Yan, Hao, Cervino, Laura, Xiao, Yang, Zhou, Linghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690082/ https://www.ncbi.nlm.nih.gov/pubmed/26103201 http://dx.doi.org/10.1120/jacmp.v16i2.5324 |
Ejemplares similares
-
Segmentation of Intensity Inhomogeneous Brain MR Images Using Active Contours
por: Akram, Farhan, et al.
Publicado: (2014) -
GTV delineation in supraglottic laryngeal carcinoma: interobserver agreement of CT versus CT-MR delineation
por: Jager, Elise Anne, et al.
Publicado: (2015) -
A Review on MR Image Intensity Inhomogeneity Correction
por: Hou, Zujun
Publicado: (2006) -
Point clouds segmentation of rapeseed siliques based on sparse-dense point clouds mapping
por: Qiao, Yuhui, et al.
Publicado: (2023) -
A novel phantom technique for evaluating the performance of PET auto-segmentation methods in delineating heterogeneous and irregular lesions
por: Berthon, B, et al.
Publicado: (2015)