Cargando…
Reducing motion artifacts in 4D MR images using principal component analysis (PCA) combined with linear polynomial fitting model
We have previously developed a retrospective 4D‐MRI technique using body area as the respiratory surrogate, but generally, the reconstructed 4D MR images suffer from severe or mild artifacts mainly caused by irregular motion during image acquisition. Those image artifacts may potentially affect the...
Autores principales: | Yang, Juan, Wang, Hongjun, Yin, Yong, Li, Dengwang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690092/ https://www.ncbi.nlm.nih.gov/pubmed/26103185 http://dx.doi.org/10.1120/jacmp.v16i2.5165 |
Ejemplares similares
-
RETRACTION NOTICE: REDUCING MOTION ARTIFACTS IN 4D MR IMAGES USING PRINCIPAL COMPONENT ANALYSIS (PCA) COMBINED WITH LINEAR POLYNOMIAL FITTING MODEL
Publicado: (2015) -
Dosimetric assessment of prostate cancer patients through principal component analysis (PCA)
por: Gloi, Aime M, et al.
Publicado: (2013) -
Registration of PET and CT images based on multiresolution gradient of mutual information demons algorithm for positioning esophageal cancer patients
por: Jin, Shuo, et al.
Publicado: (2013) -
Deformable registration using edge‐preserving scale space for adaptive image‐guided radiation therapy
por: Li, Dengwang, et al.
Publicado: (2011) -
An automated method for comparing motion artifacts in cine four‐dimensional computed tomography images
por: Cui, Guoqiang, et al.
Publicado: (2012)