Cargando…
Learning anatomy changes from patient populations to create artificial CT images for voxel‐level validation of deformable image registration
The purpose of this study was to develop an approach to generate artificial computed tomography (CT) images with known deformation by learning the anatomy changes in a patient population for voxel‐level validation of deformable image registration. Using a dataset of CT images representing anatomy ch...
Autores principales: | Yu, Z. Henry, Kudchadker, Rajat, Dong, Lei, Zhang, Yongbin, Court, Laurence E., Mourtada, Firas, Yock, Adam, Tucker, Susan L., Yang, Jinzhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690226/ https://www.ncbi.nlm.nih.gov/pubmed/26894362 http://dx.doi.org/10.1120/jacmp.v17i1.5888 |
Ejemplares similares
-
Characterization of a new physical phantom for testing rigid and deformable image registration
por: Wu, Richard Y., et al.
Publicado: (2018) -
Validation of three deformable image registration algorithms for the thorax
por: Latifi, Kujtim, et al.
Publicado: (2013) -
Quantifying the accuracy of deformable image registration for cone‐beam computed tomography with a physical phantom
por: Wu, Richard Y., et al.
Publicado: (2019) -
A Voxel-by-Voxel Comparison of Deformable Vector Fields Obtained by Three Deformable Image Registration Algorithms Applied to 4DCT Lung Studies
por: Fatyga, Mirek, et al.
Publicado: (2015) -
Impact of CT scan parameters on deformable image registration accuracy using deformable thorax phantom
por: Ikeda, Ryutaro, et al.
Publicado: (2023)