Cargando…
Crowdsourcing prior information to improve study design and data analysis
Though Bayesian methods are being used more frequently, many still struggle with the best method for setting priors with novel measures or task environments. We propose a method for setting priors by eliciting continuous probability distributions from naive participants. This allows us to include an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690646/ https://www.ncbi.nlm.nih.gov/pubmed/29145511 http://dx.doi.org/10.1371/journal.pone.0188246 |
Sumario: | Though Bayesian methods are being used more frequently, many still struggle with the best method for setting priors with novel measures or task environments. We propose a method for setting priors by eliciting continuous probability distributions from naive participants. This allows us to include any relevant information participants have for a given effect. Even when prior means are near-zero, this method provides a principle way to estimate dispersion and produce shrinkage, reducing the occurrence of overestimated effect sizes. We demonstrate this method with a number of published studies and compare the effect of different prior estimation and aggregation methods. |
---|