Cargando…
Subcellular localization of β-arrestin1 and its prognostic value in lung adenocarcinoma
β-Arrestins play important roles in cancer progression, and the subcellular localization of β-arrestin1 has been receiving increasingly more attention. Intriguingly, several studies, including some of our previous work, showed that the effects of β-arrestin1 on outcomes of cancer patients were contr...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690724/ https://www.ncbi.nlm.nih.gov/pubmed/29137031 http://dx.doi.org/10.1097/MD.0000000000008450 |
Sumario: | β-Arrestins play important roles in cancer progression, and the subcellular localization of β-arrestin1 has been receiving increasingly more attention. Intriguingly, several studies, including some of our previous work, showed that the effects of β-arrestin1 on outcomes of cancer patients were controversial. Specimens were obtained from 133 patients with lung adenocarcinoma. Immunohistochemistry was used to detect the expression of β-arrestin1 and p300 in the collected tissues. The Kaplan-Meier analysis and Cox proportional hazards regression were used to examine the relationship between β-arrestin1 and patient survival. We found no significant association between β-arrestin1 and clinicopathological variables. The Kaplan-Meier plot showed that patients with high expression of β-arrestin1 (especially in the nucleus) had a poorer overall survival (OS) and shorter disease-free survival (DFS) (P = .026, P = .015). Additionally, high p300 expression also resulted in worse OS (P = .039). Following the univariate analysis, high expressions of nuclear β-arrestin1 and p300 were classed as poor prognostic factors for both OS (P = .016) and DFS (P = .025). The expression of β-arrestin1 in the nucleus is associated with increased malignant tendency of lung adenocarcinoma, and the predictive value of β-arrestin1 may be optimized by combining information about the expression of p300 acetyltransferase. |
---|