Cargando…
Quantitative evaluation of patient setup uncertainty of stereotactic radiotherapy with the frameless 6D ExacTrac system using statistical modeling
The purpose of this study is to evaluate patient setup accuracy and quantify individual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless 6D ExacTrac system. A statistical model is used to...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690915/ https://www.ncbi.nlm.nih.gov/pubmed/27167267 http://dx.doi.org/10.1120/jacmp.v17i3.5959 |
Sumario: | The purpose of this study is to evaluate patient setup accuracy and quantify individual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless 6D ExacTrac system. A statistical model is used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the Brainlab 6D ExacTrac system using the positioning shifts of 35 patients having cranial lesions. All these patients are immobilized with rigid head‐and‐neck masks, simulated with Brainlab localizer and planned with iPlan treatment planning system. Stereoscopic X‐ray images (XC) are acquired and registered to corresponding digitally reconstructed radiographs using bony‐anatomy matching to calculate 6D translational and rotational shifts. When the shifts are within tolerance (0.7 mm and 1°), treatment is initiated. Otherwise corrections are applied and additional X‐rays (XV) are acquired to verify that patient position is within tolerance. The uncertainties from the mask, localizer, IR ‐frame, X‐ray imaging, MV, and kV isocentricity are quantified individually. Mask uncertainty (translational: lateral, longitudinal, vertical; rotational: pitch, roll, yaw) is the largest and varies with patients in the range [Formula: see text] obtained from mean of XC shifts for each patient. Setup uncertainty in IR positioning (0.88, 2.12, 1.40 mm, and 0.64°, 0.83°, 0.96°) is extracted from standard deviation of XC. Systematic uncertainties of the frame (0.18, 0.25, [Formula: see text] , [Formula: see text] , 0.18°, and 0.47°) and localizer ([Formula: see text] , [Formula: see text] , 0.03 mm, and [Formula: see text] , 0.00°, [Formula: see text]) are extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the MV radiotherapy machine are (0.27, 0.24, 0.34 mm) and kV imager (0.15, [Formula: see text] , 0.21 mm). A statistical model is developed to evaluate the individual and cumulative systematic and random positioning uncertainties induced by the different hardware and software components of the 6D ExacTrac system. The uncertainties from the mask, localizer, IR frame, X‐ray imaging, couch, MV linac, and kV imager isocentricity are quantified using statistical modeling. PACS number(s): 87.56.B‐, 87.59.B‐ |
---|