Cargando…

Comparing proton treatment plans of pediatric brain tumors in two pencil beam scanning nozzles with different spot sizes

Target coverage and organ‐at‐risk sparing were compared for 22 pediatric patients with primary brain tumors treated using two distinct nozzles in pencil beam scanning (PBS) proton therapy. Consecutive patients treated at our institution using a PBS‐dedicated nozzle (DN) were replanned using a univer...

Descripción completa

Detalles Bibliográficos
Autores principales: Kralik, John C., Xi, Liwen, Solberg, Timothy D., Simone, Charles B., Lin, Liyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690992/
https://www.ncbi.nlm.nih.gov/pubmed/26699553
http://dx.doi.org/10.1120/jacmp.v16i6.5389
Descripción
Sumario:Target coverage and organ‐at‐risk sparing were compared for 22 pediatric patients with primary brain tumors treated using two distinct nozzles in pencil beam scanning (PBS) proton therapy. Consecutive patients treated at our institution using a PBS‐dedicated nozzle (DN) were replanned using a universal nozzle (UN) beam model and the original DN plan objectives. Various cranial sites were treated among the patients to prescription doses ranging from 45 to 54 Gy. Organs at risk (OARs) evaluated were patient‐dependent; 15 unique OARs were analyzed, all of which were assessed in at least 10 patients. Clinical target volume (CTV) coverage and organ sparing were compared for the two nozzles using dose‐volume histogram data. Statistical analysis using a confidence‐interval approach demonstrates that CTV coverage is equivalent for UN and DN plans within [Formula: see text] equivalence bounds. In contrast, average mean and maximum doses are significantly higher for nearly all 15 OARs in the UN plans. The average median increase over all OARs and patients is approximately 1.7 Gy, with an increase in the 25%–75% of 1.0–2.3 Gy; the median increase to the pituitary gland, temporal lobes, eyes and cochleas are 1.8, 1.7, 0.7, and 2.7 Gy, respectively. The CTV dose distributions fall off slower for UN than for the DN plans; hence, normal tissue structures in close proximity to CTVs receive higher doses in UN plans than in DN plans. The higher OAR doses in the UN plans are likely due to the larger spot profile in plans created with UN beams. In light of the high rates of toxicities in pediatric patients receiving cranial irradiation and in light of selected brain tumor types having high cure rates, this study suggests the smaller DN beam profile is preferable for the advantage of reducing dose to OARs. PACS number: 87.55.D‐