Cargando…
Trapping/Pinning of colloidal microspheres over glass substrate using surface features
Suspensions of micro/nano particles made of Polystyrene, Poly(methyl methacrylate), Silicon dioxide etc. have been a standard model system to understand colloidal physics. These systems have proved useful insights into phenomena such as self-assembly. Colloidal model systems are also extensively use...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691049/ https://www.ncbi.nlm.nih.gov/pubmed/29147027 http://dx.doi.org/10.1038/s41598-017-15984-4 |
Sumario: | Suspensions of micro/nano particles made of Polystyrene, Poly(methyl methacrylate), Silicon dioxide etc. have been a standard model system to understand colloidal physics. These systems have proved useful insights into phenomena such as self-assembly. Colloidal model systems are also extensively used to simulate many condensed matter phenomena such as dynamics in a quenched disordered system and glass transition. A precise control of particles using optical or holographic tweezers is essential for such studies. However, studies of collective phenomena such as jamming and flocking behaviour in a disordered space are limited due to the low throughput of the optical trapping techniques. In this article, we present a technique where we trap and pin polystyrene microspheres ~10 μm over ‘triangular crest’ shaped microstructures in a microfluidic environment. Trapping/Pinning occurs due to the combined effect of hydrodynamic interaction and non-specific adhesion forces. This method allows trapping and pinning of microspheres in any arbitrary pattern with a high degree of spatial accuracy which can be useful in studying fundamentals of various collective phenomena as well as in applications such as bead detachment assay based biosensors. |
---|