Cargando…
Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks
Correlated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this que...
Autores principales: | Sailamul, Pachaya, Jang, Jaeson, Paik, Se-Bum |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691111/ https://www.ncbi.nlm.nih.gov/pubmed/28895002 http://dx.doi.org/10.1007/s10827-017-0657-5 |
Ejemplares similares
-
Face detection in untrained deep neural networks
por: Baek, Seungdae, et al.
Publicado: (2021) -
Visual number sense in untrained deep neural networks
por: Kim, Gwangsu, et al.
Publicado: (2021) -
Learning in Feedforward Neural Networks Accelerated by Transfer Entropy
por: Moldovan, Adrian, et al.
Publicado: (2020) -
Local interaction in retinal ganglion cell mosaics can generate a consistent spatial periodicity in cortical functional maps
por: Jang, Jaeson, et al.
Publicado: (2015) -
Synaptic mechanisms for motor variability in a feedforward network
por: Zhang, Guo, et al.
Publicado: (2020)