Cargando…

Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy

β-Ti alloys have attracted considerable attention as new biomedical shape memory alloys. Given the critical importance of the plastic deformation in the martensite phase for the shape memory effect and superelasticity, we investigated here the plastic deformation behaviour of a single crystal of α″...

Descripción completa

Detalles Bibliográficos
Autores principales: Tahara, Masaki, Okano, Nao, Inamura, Tomonari, Hosoda, Hideki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691214/
https://www.ncbi.nlm.nih.gov/pubmed/29146921
http://dx.doi.org/10.1038/s41598-017-15877-6
Descripción
Sumario:β-Ti alloys have attracted considerable attention as new biomedical shape memory alloys. Given the critical importance of the plastic deformation in the martensite phase for the shape memory effect and superelasticity, we investigated here the plastic deformation behaviour of a single crystal of α″ (orthorhombic) martensite of Ti-27 mol%Nb shape memory alloy obtained by the stress-induced martensitic transformation of a single crystal of the parent β phase. Four operative plastic deformation modes were observed, including two dislocation slips and two twinnings. To the best of our knowledge, two of these plastic deformation modes (one dislocation slip and one twinning) were discovered for the first time in this study. The identified slip and twinning systems in the martensite phase have corresponding slip and twinning systems in the parent β phase with which they share many similarities. Therefore, we believe that the plastic deformation of the α″ martensite is inherited from that of the parent β phase.