Cargando…

A Clinical Reasoning Tool for Virtual Patients: Design-Based Research Study

BACKGROUND: Clinical reasoning is a fundamental process medical students have to learn during and after medical school. Virtual patients (VP) are a technology-enhanced learning method to teach clinical reasoning. However, VP systems do not exploit their full potential concerning the clinical reasoni...

Descripción completa

Detalles Bibliográficos
Autores principales: Hege, Inga, Kononowicz, Andrzej A, Adler, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691243/
https://www.ncbi.nlm.nih.gov/pubmed/29097355
http://dx.doi.org/10.2196/mededu.8100
Descripción
Sumario:BACKGROUND: Clinical reasoning is a fundamental process medical students have to learn during and after medical school. Virtual patients (VP) are a technology-enhanced learning method to teach clinical reasoning. However, VP systems do not exploit their full potential concerning the clinical reasoning process; for example, most systems focus on the outcome and less on the process of clinical reasoning. OBJECTIVES: Keeping our concept grounded in a former qualitative study, we aimed to design and implement a tool to enhance VPs with activities and feedback, which specifically foster the acquisition of clinical reasoning skills. METHODS: We designed the tool by translating elements of a conceptual clinical reasoning learning framework into software requirements. The resulting clinical reasoning tool enables learners to build their patient’s illness script as a concept map when they are working on a VP scenario. The student’s map is compared with the experts’ reasoning at each stage of the VP, which is technically enabled by using Medical Subject Headings, which is a comprehensive controlled vocabulary published by the US National Library of Medicine. The tool is implemented using Web technologies, has an open architecture that enables its integration into various systems through an open application program interface, and is available under a Massachusetts Institute of Technology license. RESULTS: We conducted usability tests following a think-aloud protocol and a pilot field study with maps created by 64 medical students. The results show that learners interact with the tool but create less nodes and connections in the concept map than an expert. Further research and usability tests are required to analyze the reasons. CONCLUSIONS: The presented tool is a versatile, systematically developed software component that specifically supports the clinical reasoning skills acquisition. It can be plugged into VP systems or used as stand-alone software in other teaching scenarios. The modular design allows an extension with new feedback mechanisms and learning analytics algorithms.